In [1]:
from sklearn.metrics import f1_score as sklearn_f1
from autotagger.evaluation import basic

In [2]:
predicted,actual = basic.build_dummy_pred_test_pair()

In [3]:
# manually calculating f1 score and averaging the results for each instance
basic.get_samples_f1(predicted,actual)


Out[3]:
0.7000000000000001

In [4]:
sklearn_f1(actual,predicted,average='samples')


Out[4]:
0.70000000000000007

In [5]:
basic.get_micro_f1(predicted,actual)


Out[5]:
0.7142857142857143

In [6]:
sklearn_f1(actual,predicted,average='micro')


Out[6]:
0.7142857142857143