In [14]:
import numpy as np
def sigmoid(x):
return 1.0 / ( 1.0 + np.exp(-x) )
In [20]:
sigmoid(1.5)
Out[20]:
In [21]:
h0=sigmoid( (0.5 * 9) - 1)
In [22]:
h1=sigmoid( ((0.5 * 4) - 1) - h0 )
In [23]:
z1 = h1 * (-0.7)
In [24]:
y1 = sigmoid(z1)
y1
Out[24]:
In [12]:
np.exp(0.2) / (1+ np.exp(0.2))**2
Out[12]: