In [35]:
from bokeh.plotting import *
from collections import OrderedDict

In [36]:
output_notebook()


Bokeh Plot

Configuring embedded BokehJS mode.


In [37]:
#5 datasets (rows)
#8 buckets (columns)

buckets = ['AMOUNT', 'BUYER', 'TENDER TRACKING', 'TENDER FEATURES', 'AWARD TRACKING', 'AWARD FEATURES', 'SYSTEM', 'SUPPLIER']
datasets = ['Canada', 'Turkey', 'France', 'UK', 'Moldova']
data = [
('Canada', [1, 2, 1, 2, 1, 2, 1, 2]),
('Turkey', [2, 2, 2, 2, 0, 0, 1, 1]),
('France', [3, 2, 1, 3, 2, 1, 3, 2]),
('UK', [1, 1, 1, 0, 0, 0, 0, 1]),
('Moldova', [2, 3, 4, 1, 1, 2, 6, 9]),
]

In [38]:
x = []
y = []
radii = []
for i in xrange(len(datasets)):
    for j in xrange(len(buckets)):
        dataset = datasets[i]
        bucket = buckets[j]
        x.append(dataset)
        y.append(bucket)
        radii.append(data[i][1][j]*10)

In [39]:
source = ColumnDataSource(
    data=dict(
        x=x,
        y=y,
        radii=radii,
    )
)

In [41]:
# draw it
figure()

visual_properties = {
    'color': 'black',
    'plot_height': 800,
    'plot_width':1000,
    'title': None,
}

circle('x', 'y', 
       source=source,
       size='radii', 
       x_range=datasets, 
       y_range=buckets,
       tools="",
       **visual_properties)

grid().grid_line_color = None

show()


Bokeh Plot
Plots