In [17]:
#简单的user-based协同过滤算法示例代码
#七月算法:寒老师
#2016-03-26

#构造一份打分数据集,可以去movielens下载真实的数据做实验
users = {"小明": {"中国合伙人": 5.0, "太平轮": 3.0, "荒野猎人": 4.5, "老炮儿": 5.0, "我的少女时代": 3.0, "肖洛特烦恼": 4.5, "火星救援": 5.0},
         "小红":{"小时代4": 4.0, "荒野猎人": 3.0, "我的少女时代": 5.0, "肖洛特烦恼": 5.0, "火星救援": 3.0, "后会无期": 3.0},
         "小阳": {"小时代4": 2.0, "中国合伙人": 5.0, "我的少女时代": 3.0, "老炮儿": 5.0, "肖洛特烦恼": 4.5, "速度与激情7": 5.0},
         "小四": {"小时代4": 5.0, "中国合伙人": 3.0, "我的少女时代": 4.0, "匆匆那年": 4.0, "速度与激情7": 3.5, "火星救援": 3.5, "后会无期": 4.5},
         "六爷": {"小时代4": 2.0, "中国合伙人": 4.0, "荒野猎人": 4.5, "老炮儿": 5.0, "我的少女时代": 2.0},
         "小李":  {"荒野猎人": 5.0, "盗梦空间": 5.0, "我的少女时代": 3.0, "速度与激情7": 5.0, "蚁人": 4.5, "老炮儿": 4.0, "后会无期": 3.5},
         "隔壁老王": {"荒野猎人": 5.0, "中国合伙人": 4.0, "我的少女时代": 1.0, "Phoenix": 5.0, "甄嬛传": 4.0, "The Strokes": 5.0},
         "邻村小芳": {"小时代4": 4.0, "我的少女时代": 4.5, "匆匆那年": 4.5, "甄嬛传": 2.5, "The Strokes": 3.0}
        }

In [18]:
#定义几种距离计算函数
#更高效的方式为把得分向量化之后使用scipy中定义的distance方法

from math import sqrt
def euclidean_dis(rating1, rating2):
    """计算2个打分序列间的欧式距离. 输入的rating1和rating2都是打分dict
       格式为{'小时代4': 1.0, '疯狂动物城': 5.0}"""
    distance = 0
    commonRatings = False 
    for key in rating1:
        if key in rating2:
            distance += (rating1[key] - rating2[key])^2
            commonRatings = True
    #两个打分序列之间有公共打分电影
    if commonRatings:
        return distance
    #无公共打分电影
    else:
        return -1


def manhattan_dis(rating1, rating2):
    """计算2个打分序列间的曼哈顿距离. 输入的rating1和rating2都是打分dict
       格式为{'小时代4': 1.0, '疯狂动物城': 5.0}"""
    distance = 0
    commonRatings = False 
    for key in rating1:
        if key in rating2:
            distance += abs(rating1[key] - rating2[key])
            commonRatings = True
    #两个打分序列之间有公共打分电影
    if commonRatings:
        return distance
    #无公共打分电影
    else:
        return -1

def cos_dis(rating1, rating2):
    """计算2个打分序列间的cos距离. 输入的rating1和rating2都是打分dict
       格式为{'小时代4': 1.0, '疯狂动物城': 5.0}"""
    distance = 0
    dot_product_1 = 0
    dot_product_2 = 0
    commonRatings = False
    
    for score in rating1.values():
        dot_product_1 += score^2
    for score in rating2.values():
        dot_product_2 += score^2
        
    for key in rating1:
        if key in rating2:
            distance += rating1[key] * rating2[key]
            commonRatings = True
    #两个打分序列之间有公共打分电影
    if commonRatings:
        return 1-distance/sqrt(dot_product_1*dot_product_2)
    #无公共打分电影
    else:
        return -1

def pearson_dis(rating1, rating2):
    """计算2个打分序列间的pearson距离. 输入的rating1和rating2都是打分dict
       格式为{'小时代4': 1.0, '疯狂动物城': 5.0}"""
    sum_xy = 0
    sum_x = 0
    sum_y = 0
    sum_x2 = 0
    sum_y2 = 0
    n = 0
    for key in rating1:
        if key in rating2:
            n += 1
            x = rating1[key]
            y = rating2[key]
            sum_xy += x * y
            sum_x += x
            sum_y += y
            sum_x2 += pow(x, 2)
            sum_y2 += pow(y, 2)
    # now compute denominator
    denominator = sqrt(sum_x2 - pow(sum_x, 2) / n) * sqrt(sum_y2 - pow(sum_y, 2) / n)
    if denominator == 0:
        return 0
    else:
        return (sum_xy - (sum_x * sum_y) / n) / denominator

In [15]:
#查找最近邻
def computeNearestNeighbor(username, users):
    """在给定username的情况下,计算其他用户和它的距离并排序"""
    distances = []
    for user in users:
        if user != username:
            #distance = manhattan_dis(users[user], users[username])
            distance = pearson_dis(users[user], users[username])
            distances.append((distance, user))
    # 根据距离排序,距离越近,排得越靠前
    distances.sort()
    return distances

#推荐
def recommend(username, users):
    """对指定的user推荐电影"""
    # 找到最近邻
    nearest = computeNearestNeighbor(username, users)[0][1]

    recommendations = []
    # 找到最近邻看过,但是我们没看过的电影,计算推荐
    neighborRatings = users[nearest]
    userRatings = users[username]
    for artist in neighborRatings:
        if not artist in userRatings:
            recommendations.append((artist, neighborRatings[artist]))
    results = sorted(recommendations, key=lambda artistTuple: artistTuple[1], reverse = True)
    for result in results:
        print result[0], result[1]

In [20]:
recommend('六爷', users)


肖洛特烦恼 5.0
后会无期 3.0
火星救援 3.0

In [2]:
#简单的张量分解进行打分和推荐
#要用到numpy模块
import numpy

#手写矩阵分解
#现在有很多很方便对高维矩阵做分解的package,比如libmf, svdfeature等
def matrix_factorization(R, P, Q, K, steps=5000, alpha=0.0002, beta=0.02):
    Q = Q.T
    for step in xrange(steps):
        for i in xrange(len(R)):
            for j in xrange(len(R[i])):
                if R[i][j] > 0:
                    eij = R[i][j] - numpy.dot(P[i,:],Q[:,j])
                    for k in xrange(K):
                        P[i][k] = P[i][k] + alpha * (2 * eij * Q[k][j] - beta * P[i][k])
                        Q[k][j] = Q[k][j] + alpha * (2 * eij * P[i][k] - beta * Q[k][j])
        eR = numpy.dot(P,Q)
        e = 0
        for i in xrange(len(R)):
            for j in xrange(len(R[i])):
                if R[i][j] > 0:
                    e = e + pow(R[i][j] - numpy.dot(P[i,:],Q[:,j]), 2)
                    for k in xrange(K):
                        e = e + (beta/2) * (pow(P[i][k],2) + pow(Q[k][j],2))
        if e < 0.001:
            break
    return P, Q.T

In [7]:
#读取user数据并用张量分解进行打分

R = [
     [5,3,0,1],
     [4,0,3,1],
     [1,1,0,5],
     [1,0,0,4],
     [0,1,5,4],
    ]

R = numpy.array(R)

N = len(R)
M = len(R[0])
K = 2

P = numpy.random.rand(N,K)
Q = numpy.random.rand(M,K)

nP, nQ = matrix_factorization(R, P, Q, K)
nR = numpy.dot(nP, nQ.T)

In [8]:
nP


Out[8]:
array([[ 0.38345373,  2.181972  ],
       [ 0.32334816,  1.56283276],
       [ 1.99170613,  0.16400981],
       [ 1.59666903,  0.14124969],
       [ 1.64308192,  1.07125805]])

In [9]:
nQ


Out[9]:
array([[ 0.38946426,  2.29198167],
       [ 0.19720283,  1.18916254],
       [ 1.71589715,  1.76060186],
       [ 2.48314488,  0.03019937]])

In [10]:
nR


Out[10]:
array([[ 5.15038133,  2.67033753,  4.49955112,  1.01806534],
       [ 3.70791658,  1.92222735,  3.30635845,  0.85011689],
       [ 1.15160585,  0.58780442,  3.70631887,  4.95064787],
       [ 0.94558722,  0.48283649,  2.98840431,  3.96902618],
       [ 3.0952255 ,  1.59792036,  4.70541851,  4.11236178]])

In [11]:
R


Out[11]:
array([[5, 3, 0, 1],
       [4, 0, 3, 1],
       [1, 1, 0, 5],
       [1, 0, 0, 4],
       [0, 1, 5, 4]])

In [ ]: