Multiclass Support Vector Machine exercise

Complete and hand in this completed worksheet (including its outputs and any supporting code outside of the worksheet) with your assignment submission. For more details see the assignments page on the course website.

In this exercise you will:

  • implement a fully-vectorized loss function for the SVM
  • implement the fully-vectorized expression for its analytic gradient
  • check your implementation using numerical gradient
  • use a validation set to tune the learning rate and regularization strength
  • optimize the loss function with SGD
  • visualize the final learned weights

In [81]:
# Run some setup code for this notebook.

import random
import numpy as np
from cs231n.data_utils import load_CIFAR10
import matplotlib.pyplot as plt

# This is a bit of magic to make matplotlib figures appear inline in the
# notebook rather than in a new window.
%matplotlib inline
plt.rcParams['figure.figsize'] = (10.0, 8.0) # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'

# Some more magic so that the notebook will reload external python modules;
# see http://stackoverflow.com/questions/1907993/autoreload-of-modules-in-ipython
%load_ext autoreload
%autoreload 2


The autoreload extension is already loaded. To reload it, use:
  %reload_ext autoreload

CIFAR-10 Data Loading and Preprocessing


In [82]:
# Load the raw CIFAR-10 data.
cifar10_dir = 'cs231n/datasets/cifar-10-batches-py'
X_train, y_train, X_test, y_test = load_CIFAR10(cifar10_dir)

# As a sanity check, we print out the size of the training and test data.
print 'Training data shape: ', X_train.shape
print 'Training labels shape: ', y_train.shape
print 'Test data shape: ', X_test.shape
print 'Test labels shape: ', y_test.shape


Training data shape:  (50000, 32, 32, 3)
Training labels shape:  (50000,)
Test data shape:  (10000, 32, 32, 3)
Test labels shape:  (10000,)

In [83]:
# Visualize some examples from the dataset.
# We show a few examples of training images from each class.
classes = ['plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
num_classes = len(classes)
samples_per_class = 7
for y, cls in enumerate(classes):
    idxs = np.flatnonzero(y_train == y)
    idxs = np.random.choice(idxs, samples_per_class, replace=False)
    for i, idx in enumerate(idxs):
        plt_idx = i * num_classes + y + 1
        plt.subplot(samples_per_class, num_classes, plt_idx)
        plt.imshow(X_train[idx].astype('uint8'))
        plt.axis('off')
        if i == 0:
            plt.title(cls)
plt.show()



In [84]:
# Split the data into train, val, and test sets. In addition we will
# create a small development set as a subset of the training data;
# we can use this for development so our code runs faster.
num_training = 49000
num_validation = 1000
num_test = 1000
num_dev = 500

# Our validation set will be num_validation points from the original
# training set.
mask = range(num_training, num_training + num_validation)
X_val = X_train[mask]
y_val = y_train[mask]

# Our training set will be the first num_train points from the original
# training set.
mask = range(num_training)
X_train = X_train[mask]
y_train = y_train[mask]

# We will also make a development set, which is a small subset of
# the training set.
mask = np.random.choice(num_training, num_dev, replace=False)
X_dev = X_train[mask]
y_dev = y_train[mask]

# We use the first num_test points of the original test set as our
# test set.
mask = range(num_test)
X_test = X_test[mask]
y_test = y_test[mask]

print 'Train data shape: ', X_train.shape
print 'Train labels shape: ', y_train.shape
print 'Validation data shape: ', X_val.shape
print 'Validation labels shape: ', y_val.shape
print 'Test data shape: ', X_test.shape
print 'Test labels shape: ', y_test.shape


Train data shape:  (49000, 32, 32, 3)
Train labels shape:  (49000,)
Validation data shape:  (1000, 32, 32, 3)
Validation labels shape:  (1000,)
Test data shape:  (1000, 32, 32, 3)
Test labels shape:  (1000,)

In [85]:
# Preprocessing: reshape the image data into rows
X_train = np.reshape(X_train, (X_train.shape[0], -1))
X_val = np.reshape(X_val, (X_val.shape[0], -1))
X_test = np.reshape(X_test, (X_test.shape[0], -1))
X_dev = np.reshape(X_dev, (X_dev.shape[0], -1))

# As a sanity check, print out the shapes of the data
print 'Training data shape: ', X_train.shape
print 'Validation data shape: ', X_val.shape
print 'Test data shape: ', X_test.shape
print 'dev data shape: ', X_dev.shape


Training data shape:  (49000, 3072)
Validation data shape:  (1000, 3072)
Test data shape:  (1000, 3072)
dev data shape:  (500, 3072)

In [86]:
# Preprocessing: subtract the mean image
# first: compute the image mean based on the training data
mean_image = np.mean(X_train, axis=0)
print mean_image[:10] # print a few of the elements
plt.figure(figsize=(4,4))
plt.imshow(mean_image.reshape((32,32,3)).astype('uint8')) # visualize the mean image
plt.show()


[ 130.64189796  135.98173469  132.47391837  130.05569388  135.34804082
  131.75402041  130.96055102  136.14328571  132.47636735  131.48467347]

In [87]:
# second: subtract the mean image from train and test data
X_train -= mean_image
X_val -= mean_image
X_test -= mean_image
X_dev -= mean_image

In [88]:
# third: append the bias dimension of ones (i.e. bias trick) so that our SVM
# only has to worry about optimizing a single weight matrix W.
X_train = np.hstack([X_train, np.ones((X_train.shape[0], 1))])
X_val = np.hstack([X_val, np.ones((X_val.shape[0], 1))])
X_test = np.hstack([X_test, np.ones((X_test.shape[0], 1))])
X_dev = np.hstack([X_dev, np.ones((X_dev.shape[0], 1))])

print X_train.shape, X_val.shape, X_test.shape, X_dev.shape


(49000, 3073) (1000, 3073) (1000, 3073) (500, 3073)

SVM Classifier

Your code for this section will all be written inside cs231n/classifiers/linear_svm.py.

As you can see, we have prefilled the function compute_loss_naive which uses for loops to evaluate the multiclass SVM loss function.


In [89]:
# Evaluate the naive implementation of the loss we provided for you:
from cs231n.classifiers.linear_svm import svm_loss_naive
import time

# generate a random SVM weight matrix of small numbers
W = np.random.randn(3073, 10) * 0.0001 

loss, grad = svm_loss_naive(W, X_dev, y_dev, 0.00001)
print 'loss: %f' % (loss, )


[  1.433094     8.57852641   4.37275739   6.79093286  20.35177082
  23.43745927  11.81156669   1.76675739 -30.61925694 -47.92360788]
loss: 9.606922

The grad returned from the function above is right now all zero. Derive and implement the gradient for the SVM cost function and implement it inline inside the function svm_loss_naive. You will find it helpful to interleave your new code inside the existing function.

To check that you have correctly implemented the gradient correctly, you can numerically estimate the gradient of the loss function and compare the numeric estimate to the gradient that you computed. We have provided code that does this for you:


In [90]:
# Once you've implemented the gradient, recompute it with the code below
# and gradient check it with the function we provided for you

# Compute the loss and its gradient at W.
loss, grad = svm_loss_naive(W, X_dev, y_dev, 0.0)

# Numerically compute the gradient along several randomly chosen dimensions, and
# compare them with your analytically computed gradient. The numbers should match
# almost exactly along all dimensions.
from cs231n.gradient_check import grad_check_sparse
f = lambda w: svm_loss_naive(w, X_dev, y_dev, 0.0)[0]
grad_numerical = grad_check_sparse(f, W, grad)

# do the gradient check once again with regularization turned on
# you didn't forget the regularization gradient did you?
loss, grad = svm_loss_naive(W, X_dev, y_dev, 1e2)
f = lambda w: svm_loss_naive(w, X_dev, y_dev, 1e2)[0]
grad_numerical = grad_check_sparse(f, W, grad)


[  1.433094     8.57852641   4.37275739   6.79093286  20.35177082
  23.43745927  11.81156669   1.76675739 -30.61925694 -47.92360788]
[  1.433094     8.57852641   4.37275739   6.79093286  20.35177082
  23.43745927  11.81156669   1.76675739 -30.61925694 -47.92360788]
[  1.433094     8.57852641   4.37275739   6.79093286  20.35177082
  23.43745927  11.81156669   1.76675739 -30.61925694 -47.92360788]
numerical: -32.322914 analytic: -32.322914, relative error: 5.739226e-12
[  1.433094     8.57852641   4.37275739   6.79093286  20.35177082
  23.43745927  11.81156669   1.76675739 -30.61925694 -47.92360788]
[  1.433094     8.57852641   4.37275739   6.79093286  20.35177082
  23.43745927  11.81156669   1.76675739 -30.61925694 -47.92360788]
numerical: 10.881346 analytic: 10.881346, relative error: 5.411341e-12
[  1.433094     8.57852641   4.37275739   6.79093286  20.35177082
  23.43745927  11.81156669   1.76675739 -30.61925694 -47.92360788]
[  1.433094     8.5698102    4.37275739   6.79093286  20.36048702
  23.43745927  11.81156669   1.76675739 -30.61925694 -47.92360788]
numerical: 5.859270 analytic: 5.875220, relative error: 1.359231e-03
[  1.433094     8.57852641   4.37275739   6.79093286  20.35177082
  23.43745927  11.81156669   1.76675739 -30.61925694 -47.92360788]
[  1.433094     8.57852641   4.37275739   6.79093286  20.35177082
  23.43745927  11.81156669   1.76675739 -30.61925694 -47.92360788]
numerical: 0.151578 analytic: 0.151578, relative error: 8.674456e-10
[  1.433094     8.57852641   4.37275739   6.79093286  20.35177082
  23.43745927  11.81156669   1.76675739 -30.61925694 -47.92360788]
[  1.433094     8.57852641   4.37275739   6.79093286  20.35177082
  23.43745927  11.81156669   1.76675739 -30.61925694 -47.92360788]
numerical: -20.938661 analytic: -20.938661, relative error: 7.684040e-12
[  1.433094     8.57852641   4.37275739   6.79093286  20.35177082
  23.43745927  11.81156669   1.76675739 -30.61925694 -47.92360788]
[  1.433094     8.57852641   4.37275739   6.79093286  20.35177082
  23.43745927  11.81156669   1.76675739 -30.61925694 -47.92360788]
numerical: 20.568848 analytic: 20.568848, relative error: 1.941605e-11
[  1.433094     8.57852641   4.37275739   6.79093286  20.35177082
  23.43745927  11.81156669   1.76675739 -30.61925694 -47.92360788]
[  1.433094     8.57852641   4.37275739   6.79093286  20.35177082
  23.43745927  11.81156669   1.76675739 -30.61925694 -47.92360788]
numerical: -14.016238 analytic: -14.016238, relative error: 2.672538e-12
[  1.433094     8.57852641   4.37275739   6.79093286  20.35177082
  23.43745927  11.81156669   1.76675739 -30.61925694 -47.92360788]
[  1.433094     8.57852641   4.37275739   6.79093286  20.35177082
  23.43745927  11.81156669   1.76675739 -30.61925694 -47.92360788]
numerical: -0.626039 analytic: -0.626039, relative error: 7.791321e-10
[  1.433094     8.57852641   4.37275739   6.79093286  20.35177082
  23.43745927  11.81156669   1.76675739 -30.61925694 -47.92360788]
[  1.433094     8.57852641   4.37275739   6.79093286  20.35177082
  23.43745927  11.81156669   1.76675739 -30.61925694 -47.92360788]
numerical: 31.102497 analytic: 31.102497, relative error: 9.210271e-12
[  1.433094     8.57852641   4.37275739   6.79093286  20.35177082
  23.43745927  11.81156669   1.76675739 -30.61925694 -47.92360788]
[  1.433094     8.57852641   4.37275739   6.79093286  20.35177082
  23.43745927  11.81156669   1.76675739 -30.61925694 -47.92360788]
numerical: -9.294703 analytic: -9.294703, relative error: 3.184663e-11
[  1.433094     8.57852641   4.37275739   6.79093286  20.35177082
  23.43745927  11.81156669   1.76675739 -30.61925694 -47.92360788]
[  1.433094     8.57852641   4.37275739   6.79093286  20.35177082
  23.43745927  11.81156669   1.76675739 -30.61925694 -47.92360788]
[  1.433094     8.57852641   4.37275739   6.79093286  20.35177082
  23.43745927  11.81156669   1.76675739 -30.61925694 -47.92360788]
numerical: -46.787478 analytic: -46.794189, relative error: 7.171189e-05
[  1.433094     8.57852641   4.37275739   6.79093286  20.35177082
  23.43745927  11.81156669   1.76675739 -30.61925694 -47.92360788]
[  1.433094     8.57852641   4.37275739   6.79093286  20.35177082
  23.43745927  11.81156669   1.76675739 -30.61925694 -47.92360788]
numerical: 7.308275 analytic: 7.307886, relative error: 2.662178e-05
[  1.433094     8.57852641   4.37275739   6.79093286  20.35177082
  23.43745927  11.81156669   1.76675739 -30.61925694 -47.92360788]
[  1.433094     8.57852641   4.37275739   6.79093286  20.35177082
  23.43745927  11.81156669   1.76675739 -30.61925694 -47.92360788]
numerical: 1.658214 analytic: 1.642073, relative error: 4.890904e-03
[  1.433094     8.5698102    4.37275739   6.79093286  20.36048702
  23.43745927  11.81156669   1.76675739 -30.61925694 -47.92360788]
[  1.433094     8.57852641   4.37275739   6.79093286  20.35177082
  23.43745927  11.81156669   1.76675739 -30.61925694 -47.92360788]
numerical: -1.845558 analytic: -1.846890, relative error: 3.606310e-04
[  1.433094     8.57852641   4.37275739   6.79093286  20.35177082
  23.43745927  11.81156669   1.76675739 -30.61925694 -47.92360788]
[  1.433094     8.57852641   4.37275739   6.79093286  20.35177082
  23.43745927  11.81156669   1.76675739 -30.61925694 -47.92360788]
numerical: 2.985412 analytic: 3.003061, relative error: 2.947273e-03
[  1.433094     8.57852641   4.37275739   6.79093286  20.35177082
  23.43745927  11.81156669   1.76675739 -30.61925694 -47.92360788]
[  1.433094     8.57852641   4.37275739   6.79093286  20.35177082
  23.43745927  11.81156669   1.76675739 -30.61925694 -47.92360788]
numerical: -7.337510 analytic: -7.332189, relative error: 3.627350e-04
[  1.433094     8.57852641   4.37275739   6.79093286  20.35177082
  23.43745927  11.81156669   1.76675739 -30.61925694 -47.92360788]
[  1.433094     8.57852641   4.37275739   6.79093286  20.35177082
  23.43745927  11.81156669   1.76675739 -30.61925694 -47.92360788]
numerical: 23.611094 analytic: 23.597939, relative error: 2.786490e-04
[  1.433094     8.57852641   4.37275739   6.79093286  20.35177082
  23.43745927  11.81156669   1.76675739 -30.61925694 -47.92360788]
[  1.433094     8.57852641   4.37275739   6.79093286  20.35177082
  23.43745927  11.81156669   1.76675739 -30.61925694 -47.92360788]
numerical: -18.024096 analytic: -18.038424, relative error: 3.973286e-04
[  1.433094     8.57852641   4.37275739   6.79093286  20.35177082
  23.43745927  11.81156669   1.76675739 -30.61925694 -47.92360788]
[  1.433094     8.57852641   4.37275739   6.79093286  20.35177082
  23.43745927  11.81156669   1.76675739 -30.61925694 -47.92360788]
numerical: -37.520293 analytic: -37.512870, relative error: 9.893346e-05
[  1.433094     8.57852641   4.37275739   6.79093286  20.35177082
  23.43745927  11.81156669   1.76675739 -30.61925694 -47.92360788]
[  1.433094     8.5698102    4.37275739   6.79093286  20.36048702
  23.43745927  11.81156669   1.76675739 -30.61925694 -47.92360788]
numerical: 7.222986 analytic: 7.336228, relative error: 7.778019e-03

Inline Question 1:

It is possible that once in a while a dimension in the gradcheck will not match exactly. What could such a discrepancy be caused by? Is it a reason for concern? What is a simple example in one dimension where a gradient check could fail? Hint: the SVM loss function is not strictly speaking differentiable

Your Answer: fill this in.


In [120]:
# Next implement the function svm_loss_vectorized; for now only compute the loss;
# we will implement the gradient in a moment.
tic = time.time()
loss_naive, grad_naive = svm_loss_naive(W, X_dev, y_dev, 0.00001)
toc = time.time()
print 'Naive loss: %e computed in %fs' % (loss_naive, toc - tic)

from cs231n.classifiers.linear_svm import svm_loss_vectorized
tic = time.time()
loss_vectorized, _ = svm_loss_vectorized(W, X_dev, y_dev, 0.00001)
toc = time.time()
print 'Vectorized loss: %e computed in %fs' % (loss_vectorized, toc - tic)

# The losses should match but your vectorized implementation should be much faster.
print 'difference: %f' % (loss_naive - loss_vectorized)


Naive loss: 9.606922e+00 computed in 0.127854s
Vectorized loss: 9.606922e+00 computed in 0.148164s
difference: 0.000000

In [135]:
# Complete the implementation of svm_loss_vectorized, and compute the gradient
# of the loss function in a vectorized way.

# The naive implementation and the vectorized implementation should match, but
# the vectorized version should still be much faster.
tic = time.time()
_, grad_naive = svm_loss_naive(W, X_dev, y_dev, 0.00001)
toc = time.time()
print 'Naive loss and gradient: computed in %fs' % (toc - tic)

# print grad_naive[0,:]
tic = time.time()
_, grad_vectorized = svm_loss_vectorized(W, X_dev, y_dev, 0.00001)
toc = time.time()
print 'Vectorized loss and gradient: computed in %fs' % (toc - tic)
#print grad_vectorized[0,:]
# The loss is a single number, so it is easy to compare the values computed
# by the two implementations. The gradient on the other hand is a matrix, so
# we use the Frobenius norm to compare them.
difference = np.linalg.norm(grad_naive - grad_vectorized, ord='fro')
print 'difference: %f' % difference


Naive loss and gradient: computed in 0.111161s
(500, 3073) (3073, 10)
Vectorized loss and gradient: computed in 0.025606s
difference: 0.000000

Stochastic Gradient Descent

We now have vectorized and efficient expressions for the loss, the gradient and our gradient matches the numerical gradient. We are therefore ready to do SGD to minimize the loss.


In [140]:
# In the file linear_classifier.py, implement SGD in the function
# LinearClassifier.train() and then run it with the code below.
from cs231n.classifiers import LinearSVM
svm = LinearSVM()
tic = time.time()
loss_hist = svm.train(X_train, y_train, learning_rate=1e-7, reg=5e4,
                      num_iters=1500, verbose=True)
toc = time.time()
print 'That took %fs' % (toc - tic)


iteration 0 / 1500: loss 24.658128
iteration 100 / 1500: loss 10.697210
iteration 200 / 1500: loss 9.573401
iteration 300 / 1500: loss 9.672322
iteration 400 / 1500: loss 7.653962
iteration 500 / 1500: loss 6.937888
iteration 600 / 1500: loss 6.940470
iteration 700 / 1500: loss 9.368367
iteration 800 / 1500: loss 7.958185
iteration 900 / 1500: loss 6.211591
iteration 1000 / 1500: loss 7.895535
iteration 1100 / 1500: loss 6.796761
iteration 1200 / 1500: loss 6.756507
iteration 1300 / 1500: loss 6.687285
iteration 1400 / 1500: loss 5.800032
That took 26.035917s

In [141]:
# A useful debugging strategy is to plot the loss as a function of
# iteration number:
plt.plot(loss_hist)
plt.xlabel('Iteration number')
plt.ylabel('Loss value')
plt.show()



In [143]:
# Write the LinearSVM.predict function and evaluate the performance on both the
# training and validation set
y_train_pred = svm.predict(X_train)
print 'training accuracy: %f' % (np.mean(y_train == y_train_pred), )
y_val_pred = svm.predict(X_val)
print 'validation accuracy: %f' % (np.mean(y_val == y_val_pred), )


training accuracy: 0.300020
validation accuracy: 0.291000

In [148]:
# Use the validation set to tune hyperparameters (regularization strength and
# learning rate). You should experiment with different ranges for the learning
# rates and regularization strengths; if you are careful you should be able to
# get a classification accuracy of about 0.4 on the validation set.
learning_rates = [1e-7, 5e-5, 1e-6, 5e-7, 5e-8]
regularization_strengths = [5e4, 1e5, 1e6, 1e7]

# results is dictionary mapping tuples of the form
# (learning_rate, regularization_strength) to tuples of the form
# (training_accuracy, validation_accuracy). The accuracy is simply the fraction
# of data points that are correctly classified.
results = {}
best_val = -1   # The highest validation accuracy that we have seen so far.
best_svm = None # The LinearSVM object that achieved the highest validation rate.

################################################################################
# TODO:                                                                        #
# Write code that chooses the best hyperparameters by tuning on the validation #
# set. For each combination of hyperparameters, train a linear SVM on the      #
# training set, compute its accuracy on the training and validation sets, and  #
# store these numbers in the results dictionary. In addition, store the best   #
# validation accuracy in best_val and the LinearSVM object that achieves this  #
# accuracy in best_svm.                                                        #
#                                                                              #
# Hint: You should use a small value for num_iters as you develop your         #
# validation code so that the SVMs don't take much time to train; once you are #
# confident that your validation code works, you should rerun the validation   #
# code with a larger value for num_iters.                                      #
################################################################################
for lr in learning_rates:
    for reg_s in regularization_strengths:
        svm.train(X_train, y_train, learning_rate=lr, reg=reg_s,
                      num_iters=1500, verbose=False)
        y_train_acc = np.mean(y_train == svm.predict(X_train))
        y_val_acc = np.mean(y_val == svm.predict(X_val))
        results[(lr,reg_s)] = (y_train_acc, y_val_acc)

################################################################################
#                              END OF YOUR CODE                                #
################################################################################
    
# Print out results.
best_lnr = None
for lr, reg in sorted(results):
    train_accuracy, val_accuracy = results[(lr, reg)]
    if best_val < val_accuracy:
        best_val = val_accuracy
        best_lnr = lr, reg
    print 'lr %e reg %e train accuracy: %f val accuracy: %f' % (
                lr, reg, train_accuracy, val_accuracy)


lr 5.000000e-08 reg 5.000000e+04 train accuracy: 0.392184 val accuracy: 0.316000
lr 5.000000e-08 reg 1.000000e+05 train accuracy: 0.391429 val accuracy: 0.317000
lr 5.000000e-08 reg 1.000000e+06 train accuracy: 0.392082 val accuracy: 0.318000
lr 5.000000e-08 reg 1.000000e+07 train accuracy: 0.391735 val accuracy: 0.320000
lr 1.000000e-07 reg 5.000000e+04 train accuracy: 0.400224 val accuracy: 0.350000
lr 1.000000e-07 reg 1.000000e+05 train accuracy: 0.399878 val accuracy: 0.345000
lr 1.000000e-07 reg 1.000000e+06 train accuracy: 0.399408 val accuracy: 0.344000
lr 1.000000e-07 reg 1.000000e+07 train accuracy: 0.399510 val accuracy: 0.347000
lr 5.000000e-07 reg 5.000000e+04 train accuracy: 0.391837 val accuracy: 0.318000
lr 5.000000e-07 reg 1.000000e+05 train accuracy: 0.392347 val accuracy: 0.327000
lr 5.000000e-07 reg 1.000000e+06 train accuracy: 0.391531 val accuracy: 0.318000
lr 5.000000e-07 reg 1.000000e+07 train accuracy: 0.392898 val accuracy: 0.319000
lr 1.000000e-06 reg 5.000000e+04 train accuracy: 0.396327 val accuracy: 0.336000
lr 1.000000e-06 reg 1.000000e+05 train accuracy: 0.396082 val accuracy: 0.333000
lr 1.000000e-06 reg 1.000000e+06 train accuracy: 0.392735 val accuracy: 0.331000
lr 1.000000e-06 reg 1.000000e+07 train accuracy: 0.393592 val accuracy: 0.320000
lr 5.000000e-05 reg 5.000000e+04 train accuracy: 0.367429 val accuracy: 0.338000
lr 5.000000e-05 reg 1.000000e+05 train accuracy: 0.346714 val accuracy: 0.305000
lr 5.000000e-05 reg 1.000000e+06 train accuracy: 0.326449 val accuracy: 0.287000
lr 5.000000e-05 reg 1.000000e+07 train accuracy: 0.313673 val accuracy: 0.303000
best validation accuracy achieved during cross-validation: 0.350000

In [151]:
best_svm=  LinearSVM()
best_svm.train(X_train, y_train, learning_rate=best_lnr[0], reg=best_lnr[1],
                      num_iters=1500, verbose=True)
print 'best validation accuracy achieved during cross-validation: %f' % best_val


iteration 0 / 1500: loss 20.729239
iteration 100 / 1500: loss 11.460534
iteration 200 / 1500: loss 10.856085
iteration 300 / 1500: loss 7.961075
iteration 400 / 1500: loss 7.847572
iteration 500 / 1500: loss 8.680534
iteration 600 / 1500: loss 7.518445
iteration 700 / 1500: loss 7.036669
iteration 800 / 1500: loss 8.309310
iteration 900 / 1500: loss 7.977619
iteration 1000 / 1500: loss 7.523931
iteration 1100 / 1500: loss 6.168560
iteration 1200 / 1500: loss 7.451258
iteration 1300 / 1500: loss 7.374858
iteration 1400 / 1500: loss 5.910511
best validation accuracy achieved during cross-validation: 0.350000

In [152]:
# Visualize the cross-validation results
import math
x_scatter = [math.log10(x[0]) for x in results]
y_scatter = [math.log10(x[1]) for x in results]

# plot training accuracy
marker_size = 100
colors = [results[x][0] for x in results]
plt.subplot(2, 1, 1)
plt.scatter(x_scatter, y_scatter, marker_size, c=colors)
plt.colorbar()
plt.xlabel('log learning rate')
plt.ylabel('log regularization strength')
plt.title('CIFAR-10 training accuracy')

# plot validation accuracy
colors = [results[x][1] for x in results] # default size of markers is 20
plt.subplot(2, 1, 2)
plt.scatter(x_scatter, y_scatter, marker_size, c=colors)
plt.colorbar()
plt.xlabel('log learning rate')
plt.ylabel('log regularization strength')
plt.title('CIFAR-10 validation accuracy')
plt.show()



In [153]:
# Evaluate the best svm on test set
y_test_pred = best_svm.predict(X_test)
test_accuracy = np.mean(y_test == y_test_pred)
print 'linear SVM on raw pixels final test set accuracy: %f' % test_accuracy


linear SVM on raw pixels final test set accuracy: 0.299000

In [159]:
# Visualize the learned weights for each class.
# Depending on your choice of learning rate and regularization strength, these may
# or may not be nice to look at.
w = best_svm.W[:-1,:] # strip out the bias
w = w.reshape(32, 32,3, 10)
w_min, w_max = np.min(w), np.max(w)
classes = ['plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
for i in xrange(10):
  plt.subplot(2, 5, i + 1)
    
  # Rescale the weights to be between 0 and 255
  wimg = 255.0 * (w[:, :, :, i].squeeze() - w_min) / (w_max - w_min)
  plt.imshow(wimg.astype('uint8'))
  plt.axis('off')
  plt.title(classes[i])


Inline question 2:

Describe what your visualized SVM weights look like, and offer a brief explanation for why they look they way that they do.

Your answer: fill this in