In [1]:
import numpy as np
from keras.datasets import imdb
from keras.models import Sequential
from keras.layers import Dense, Flatten
from keras.layers.embeddings import Embedding
from keras.preprocessing import sequence
In [2]:
np.random.seed(7)
In [3]:
top_words = 5000
(X_train, y_train), (X_test, y_test) = imdb.load_data(num_words=top_words, seed=7)
In [4]:
X_train = sequence.pad_sequences(X_train, maxlen=500)
X_test = sequence.pad_sequences(X_test, maxlen=500)
In [5]:
def build_model():
model = Sequential()
model.add(Embedding(top_words, 32, input_length=500))
model.add(Flatten())
model.add(Dense(250, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
return model
In [6]:
model = build_model()
In [7]:
model.fit(X_train, y_train, validation_data=(X_test, y_test),
epochs=2, batch_size=64, verbose=1)
scores = model.evaluate(X_test, y_test, verbose=0)
print(scores[1] * 100)
In [12]:
from keras.layers.convolutional import Convolution1D
from keras.layers.convolutional import MaxPooling1D
from keras.layers import Dropout
In [15]:
def create_cnn():
model = Sequential()
model.add(Dropout(0.2, input_shape=(top_words,)))
model.add(Embedding(top_words, 32, input_length=max_words))
model.add(Convolution1D(nb_filter=32, filter_length=3, border_mode= 'same', activation= 'relu' ))
model.add(MaxPooling1D(pool_length=2))
model.add(Flatten())
model.add(Dropout(0.3))
model.add(Dense(250, activation= 'relu' ))
model.add(Dense(1, activation= 'sigmoid' ))
model.compile(loss= 'binary_crossentropy' , optimizer= 'adam' , metrics=['accuracy'])
return model
# Fit the model
model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=2, batch_size=128, verbose=1)
# Final evaluation of the model
scores = model.evaluate(X_test, y_test, verbose=0)
print("Accuracy:", scores[1]*100)