In [132]:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib.ticker import FuncFormatter
%matplotlib inline
pd.set_option('display.max_rows',8)
from pandas import *
from pandas.io.parsers import read_csv
In [133]:
ral = read_csv('cern30min.csv', index_col=False, header=None,
names=['timestamp','host','size','duration'],
usecols=['timestamp', 'duration'])
ral['timestamp'] = pd.to_datetime(ral['timestamp'],unit='s')
ral['time'] = ral['timestamp'] - min(ral['timestamp'])
ral.set_index('time', inplace=True)
In [134]:
ral.describe()
Out[134]:
In [135]:
ral.plot(x=ral.index.astype('timedelta64[s]'), y='duration')
Out[135]: