In [1]:
import numpy as np
import travelmaps2 as tm
import matplotlib.pyplot as plt
from mpl_toolkits.basemap import Basemap
from matplotlib import cm, colors, rcParams

plt.style.use('ggplot')

# Adjust dpi, so figure on screen and savefig looks the same
dpi = 100
rcParams['figure.dpi'] = dpi
rcParams['savefig.dpi'] = dpi

fpath = '../mexico.werthmuller.org/content/images/'

Sprachenvielfalt

http://mexico.werthmuller.org/kulturgeschichte/sprachenvielfalt

Bevölkerung mit indigener Hauptsprache


In [2]:
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
lal = 1300000
ax.barh(10.6, 1544968); ax.text(lal, 11, "1'544'968", va='center', ha='right')
ax.barh( 9.6,  786113); ax.text(lal, 10, "  786'113", va='center', ha='right')
ax.barh( 8.6,  477995); ax.text(lal,  9, "  477'995", va='center', ha='right')
ax.barh( 7.6,  450429); ax.text(lal,  8, "  450'429", va='center', ha='right')
ax.barh( 6.6,  445856); ax.text(lal,  7, "  445'856", va='center', ha='right')
ax.barh( 5.6,  404704); ax.text(lal,  6, "  404'704", va='center', ha='right')
ax.barh( 4.6,  284992); ax.text(lal,  5, "  284'992", va='center', ha='right')
ax.barh( 3.6,  244033); ax.text(lal,  4, "  244'033", va='center', ha='right')
ax.barh( 2.6,  223073); ax.text(lal,  3, "  223'073", va='center', ha='right')
ax.barh( 1.6,  212117); ax.text(lal,  2, "  212'117", va='center', ha='right')
ax.barh( 0.6, 1620948); ax.text(lal,  1, "1'620'948", va='center', ha='right')

ax.xaxis.set_ticks_position('none')
ax.yaxis.set_ticks_position('none')

plt.xticks([500000, 1000000, 1500000], ())
plt.yticks(np.arange(11)+1, ('Alle anderen', 'Chol', 'Mazateco', 'Totonaca', 'Otomi',
                             'Tzotzil', 'Tzetzal', 'Zapotecas', 'Mixtecas', 'Maya', 'Náhuatl'))

plt.title("Bevölkerung mit indigener Hauptsprache")

#plt.savefig(fpath+'sprachenvielfalt/BevSprache.png', bbox_inches='tight')
plt.show()


Prozentualer Anteil der Bevölkerung


In [3]:
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
lal = 5
ax.barh(10.6, 33.8); ax.text(lal, 11, "33.8 %", va='center', ha='right')
ax.barh( 9.6, 29.6); ax.text(lal, 10, "29.6 %", va='center', ha='right')
ax.barh( 8.6, 27.3); ax.text(lal,  9, "27.3 %", va='center', ha='right')
ax.barh( 7.6, 16.2); ax.text(lal,  8, "16.2 %", va='center', ha='right')
ax.barh( 6.6, 15.2); ax.text(lal,  7, "15.2 %", va='center', ha='right')
ax.barh( 5.6, 14.8); ax.text(lal,  6, "14.8 %", va='center', ha='right')
ax.barh( 4.6, 12.0); ax.text(lal,  5, "12.0 %", va='center', ha='right')
ax.barh( 3.6, 11.5); ax.text(lal,  4, "11.5 %", va='center', ha='right')
ax.barh( 2.6, 10.6); ax.text(lal,  3, "10.6 %", va='center', ha='right')
ax.barh( 1.6,  9.3); ax.text(lal,  2, " 9.3 %", va='center', ha='right')
ax.barh( 0.6,  6.6); ax.text(lal,  1, " 6.6 %", va='center', ha='right')

ax.xaxis.set_ticks_position('none')
ax.yaxis.set_ticks_position('none')

plt.xticks([10, 20, 30], ())
plt.yticks(np.arange(11)+1, ('Mexiko Durch.', 'Veracruz', 'San Luis Potosí', 'Puebla', 'Campeche',
                             'Hidalgo', 'Guerrero', 'Quintana Roo', 'Chiapas', 'Yucatán', 'Oaxaca'))

plt.title("Prozentualer Anteil der Bevölkerung")

#plt.savefig(fpath+'sprachenvielfalt/ProzBev.png', bbox_inches='tight')
plt.show()


Analphabetismus in Prozent


In [4]:
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
lal = 3
ax.barh( 7.6, 17.8); ax.text(lal,  8, "17.8 %", va='center', ha='right')
ax.barh( 6.6, 16.7); ax.text(lal,  7, "16.7 %", va='center', ha='right')
ax.barh( 5.6, 16.3); ax.text(lal,  6, "16.3 %", va='center', ha='right')
ax.barh( 4.6, 11.4); ax.text(lal,  5, "11.4 %", va='center', ha='right')
ax.barh( 3.6, 10.4); ax.text(lal,  4, "10.4 %", va='center', ha='right')
ax.barh( 2.6, 10.2); ax.text(lal,  3, "10.2 %", va='center', ha='right')
ax.barh( 1.6, 10.2); ax.text(lal,  2, "10.2 %", va='center', ha='right')
ax.barh( 0.6,  6.9); ax.text(lal,  1, " 6.9 %", va='center', ha='right')

ax.xaxis.set_ticks_position('none')
ax.yaxis.set_ticks_position('none')

plt.xticks([5, 10, 15], ())
plt.yticks(np.arange(8)+1, ('Mexiko Durch.', 'Hidalgo', 'Michoacán', 'Puebla', 'Veracruz',
                             'Oaxaca', 'Guerrero', 'Chiapas'))

plt.title("Analphabetismus in Prozent")

#plt.savefig(fpath+'sprachenvielfalt/Analfabetismo.png', bbox_inches='tight')
plt.show()


Karte Analphabetismus


In [5]:
tm.setup_noxkcd(200)
fig_x = plt.figure(figsize=(tm.cm2in([11, 6])))
  
# Create basemap
m_x = Basemap(width=3500000, height=2300000, resolution='c',
              projection='tmerc', lat_0=24, lon_0=-102)
m_x.drawmapboundary(fill_color='#99ccff')

# Fill non-visited countries (fillcontinents does a bad job)
countries = ['USA', 'BLZ', 'GTM', 'HND', 'SLV', 'NIC', 'CUB']
tm.country(countries, m_x, fc='.8', ec='.5', lw=.5)

# Fill states
cols = np.array([3.3,  #  0 Aguascalientes
                 3.2,  #  1 Baja California Sur
                 2.6,  #  2 Baja California
                 8.3,  #  3 Campeche
                 17.8, #  4 Chiapas
                 3.7,  #  5 Chihuahua
                 2.6,  #  6 Coahuila
                 5.1,  #  7 Colima
                 2.1,  #  8 Distrito Federal
                 3.8,  #  9 Durango
                 8.2,  # 10 Guanajuato
                 16.7, # 11 Guerrero
                 10.2, # 12 Hidalgo
                 4.4,  # 13 Jalisco
                 4.4,  # 14 México
                 10.2, # 15 Michoacán
                 6.4,  # 16 Morelos
                 6.3,  # 17 Nayarit
                 2.2,  # 18 Nuevo León
                 16.3, # 19 Oaxaca
                 10.4, # 20 Puebla
                 6.3,  # 21 Querétaro
                 4.8,  # 22 Quintana Roo
                 7.9,  # 23 San Luis Potosí
                 5.0,  # 24 Sinaloa
                 3.0,  # 25 Sonora
                 7.1,  # 26 Tabasco
                 3.6,  # 27 Tamaulipas
                 5.2,  # 28 Tlaxcala
                 11.4, # 29 Veracruz
                 9.2,  # 30 Yucatán
                 5.5]) # 31 Zacatecas
cols = cm.Greens((cols-2.1)/(17.8-2.1))

fcs = 32*['']
for i in range(32):
    fcs[i] = colors.rgb2hex(cols[i,:])

tm.country('MEX', bmap=m_x, fc=fcs, ec='k', lw=.5, adm=1)


# Add visited cities
tm.city([0, 0], '', m_x)

# Save-path
#plt.savefig(fpath+'sprachenvielfalt/KarteAnalphabetismus.png', bbox_inches='tight')
plt.show()


Karte indigene Sprachen


In [6]:
tm.setup_noxkcd(200)
fig_x = plt.figure(figsize=(tm.cm2in([11, 6])))

# Create basemap
m_x = Basemap(width=3500000, height=2300000, resolution='c',
              projection='tmerc', lat_0=24, lon_0=-102)
m_x.drawmapboundary(fill_color='#99ccff')

# Fill non-visited countries (fillcontinents does a bad job)
countries = ['USA', 'BLZ', 'GTM', 'HND', 'SLV', 'NIC', 'CUB']
tm.country(countries, m_x, fc='.8', ec='.5', lw=.5)

# Fill states
cols = np.array([0.2,  #  0 Aguascalientes
                 1.8,  #  1 Baja California Sur
                 1.4,  #  2 Baja California
                 12.0, #  3 Campeche
                 27.3, #  4 Chiapas
                 3.5,  #  5 Chihuahua
                 0.2,  #  6 Coahuila
                 0.7,  #  7 Colima
                 1.5,  #  8 Distrito Federal
                 2.2,  #  9 Durango
                 0.3,  # 10 Guanajuato
                 15.2, # 11 Guerrero
                 14.8, # 12 Hidalgo
                 0.8,  # 13 Jalisco
                 2.7,  # 14 México
                 3.5,  # 15 Michoacán
                 1.9,  # 16 Morelos
                 5.2,  # 17 Nayarit
                 0.9,  # 18 Nuevo León
                 33.8, # 19 Oaxaca
                 11.5, # 20 Puebla
                 1.8,  # 21 Querétaro
                 16.2, # 22 Quintana Roo
                 10.6, # 23 San Luis Potosí
                 0.9,  # 24 Sinaloa
                 2.5,  # 25 Sonora
                 2.9,  # 26 Tabasco
                 0.8,  # 27 Tamaulipas
                 2.5,  # 28 Tlaxcala
                 9.3,  # 29 Veracruz
                 29.6, # 30 Yucatán
                 0.4]) # 31 Zacatecas
cols = cm.Greens((cols-0.2)/(33.8-.2))

fcs = 32*['']
for i in range(32):
    fcs[i] = colors.rgb2hex(cols[i,:])

tm.country('MEX', bmap=m_x, fc=fcs, ec='k', lw=.5, adm=1)


# Add visited cities
tm.city([0, 0], '', m_x)

# Save-path
#plt.savefig(fpath+'sprachenvielfalt/KarteEinheimischeSprachen.png', bbox_inches='tight')
plt.show()