In [1]:
import numpy as np, pandas as pd

In [2]:
path = '/media/mike/tera/data/erplab/Test_Data/S1/'

In [9]:
eventfile = path + 'event_mapping_1.txt'
# event_mapping = pd.read_csv(path + 'event_mapping_1.txt', sep=r'\s*', header=None) # wrong!
event_mapping = pd.read_fwf(eventfile, header=None) # correct!
event_mapping


Out[9]:
0 1 2 3
0 22 "Frequent_Digit" 1 "Frequent Category (Digit)"
1 12 "Rare_Letter" 2 "Rare Category (Letter)"
2 9 "Corr_Resp" [] ""
3 8 "Err_Resp" [] ""

In [10]:
with open(eventfile, 'r') as infile:
    data = infile.read()

In [12]:
print(data)


   22 "Frequent_Digit"     1 "Frequent Category (Digit)"
   12    "Rare_Letter"     2 "Rare Category (Letter)"
    9      "Corr_Resp"    []                   ""
    8      "Err_Resp"    []                   ""


In [23]:
print(data.replace(' ', chr(0x2610)))


☐☐☐22☐"Frequent_Digit"☐☐☐☐☐1☐"Frequent☐Category☐(Digit)"
☐☐☐12☐☐☐☐"Rare_Letter"☐☐☐☐☐2☐"Rare☐Category☐(Letter)"
☐☐☐☐9☐☐☐☐☐☐"Corr_Resp"☐☐☐☐[]☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐""
☐☐☐☐8☐☐☐☐☐☐"Err_Resp"☐☐☐☐[]☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐☐""


In [22]:
chr(0x25a1)


Out[22]:
'□'

In [24]:
from tabulate import tabulate

def to_fwf(df, fname):
    content = tabulate(df.values.tolist(), list(df.columns), tablefmt="plain")
    open(fname, "w").write(content)

In [26]:
to_fwf(event_mapping, path +'test_event.txt')

In [ ]: