Model Report
Accuracy : 0.91160
Optimal Boosters : 1165
CPU times: user 4h 29min 58s, sys: 1min 47s, total: 4h 31min 45s
Wall time: 7min 35s
Model Report
Accuracy : 0.91160
Optimal Boosters : 1165
CPU times: user 4h 29min 54s, sys: 1min 52s, total: 4h 31min 46s
Wall time: 7min 35s
Iteration 25
Average Error: [[ 0.22778333 0.247 0.16893333]]
High Bias
Iteration 50
Average Error: [[ 0.11125 0.187 0.11456667]]
High Bias
Iteration 75
Average Error: [[ 0.0686 0.16926667 0.1003 ]]
High Variance
Iteration 100
Average Error: [[ 0.07016667 0.1665 0.09733333]]
tuned
Iteration 125
Average Error: [[ 0.07085 0.16436667 0.0955 ]]
tuned
Iteration 150
Average Error: [[ 0.0708 0.16293333 0.0938 ]]
tuned
Iteration 175
Average Error: [[ 0.07091667 0.16163333 0.0924 ]]
tuned
Iteration 200
Average Error: [[ 0.07046667 0.16036667 0.09143333]]
tuned
Iteration 225
Average Error: [[ 0.06988333 0.159 0.09026667]]
tuned
Iteration 250
Average Error: [[ 0.06906667 0.15746667 0.0888 ]]
tuned
Iteration 275
Average Error: [[ 0.06795 0.15666667 0.08793333]]
tuned
Iteration 300
Average Error: [[ 0.06698333 0.15563333 0.08633333]]
tuned
Iteration 325
Average Error: [[ 0.06591667 0.15473333 0.08576667]]
tuned
Iteration 350
Average Error: [[ 0.065 0.15393333 0.08503333]]
tuned
Iteration 375
Average Error: [[ 0.06385 0.1527 0.0847 ]]
tuned
Iteration 400
Average Error: [[ 0.06288333 0.15236667 0.08403333]]
tuned
Iteration 425
Average Error: [[ 0.06193333 0.1512 0.0838 ]]
tuned
Iteration 450
Average Error: [[ 0.06088333 0.15013333 0.083 ]]
tuned
Iteration 475
Average Error: [[ 0.06006667 0.14926667 0.08233333]]
tuned
Iteration 500
Average Error: [[ 0.05926667 0.14823333 0.08196667]]
tuned
Iteration 525
Average Error: [[ 0.05878333 0.14773333 0.08146667]]
tuned
Iteration 550
Average Error: [[ 0.05786667 0.14663333 0.0809 ]]
tuned
Iteration 575
Average Error: [[ 0.05683333 0.14576667 0.08016667]]
tuned
Iteration 600
Average Error: [[ 0.05608333 0.14523333 0.07996667]]
tuned
Iteration 625
Average Error: [[ 0.05548333 0.14463333 0.07983333]]
tuned
Iteration 650
Average Error: [[ 0.05481667 0.14456667 0.07953333]]
tuned
Iteration 675
Average Error: [[ 0.05408333 0.14423333 0.07926667]]
tuned
Iteration 700
Average Error: [[ 0.05346667 0.144 0.079 ]]
tuned
Iteration 725
Average Error: [[ 0.053 0.14346667 0.07893333]]
tuned
Iteration 750
Average Error: [[ 0.05231667 0.14286667 0.07856667]]
tuned
Iteration 775
Average Error: [[ 0.05183333 0.14226667 0.07826667]]
tuned
Iteration 800
Average Error: [[ 0.0513 0.14213333 0.07816667]]
tuned
Iteration 825
Average Error: [[ 0.05086667 0.14183333 0.0777 ]]
tuned
Iteration 850
Average Error: [[ 0.05053333 0.14166667 0.07763333]]
tuned
Iteration 875
Average Error: [[ 0.05016667 0.14133333 0.0774 ]]
tuned
Iteration 900
Average Error: [[ 0.04976667 0.14086667 0.07723333]]
tuned
Iteration 925
Average Error: [[ 0.04933333 0.14086667 0.07723333]]
tuned
Iteration 950
Average Error: [[ 0.04905 0.1406 0.07703333]]
tuned
Iteration 975
Average Error: [[ 0.04891667 0.1404 0.07663333]]
tuned
Model Report
Accuracy : 0.90760
Optimal Boosters : 951
CPU times: user 5h 59min 41s, sys: 2min 46s, total: 6h 2min 27s
Wall time: 10min 6s
Iteration 25
Average Error: [[ 0.22778333 0.247 0.16893333]]
High Bias
Iteration 50
Average Error: [[ 0.11125 0.187 0.11456667]]
High Bias
Iteration 75
Average Error: [[ 0.0686 0.16926667 0.1003 ]]
High Bias
Iteration 100
Average Error: [[ 0.05861667 0.16283333 0.0938 ]]
High Bias
Iteration 125
Average Error: [[ 0.05461667 0.15913333 0.0902 ]]
High Bias
Iteration 150
Average Error: [[ 0.05278333 0.15746667 0.08896667]]
High Bias
Iteration 175
Average Error: [[ 0.05165 0.15746667 0.0876 ]]
High Bias
Iteration 200
Average Error: [[ 0.05148333 0.15746667 0.0887 ]]
High Bias
Iteration 225
Average Error: [[ 0.05116667 0.15743333 0.08856667]]
High Bias
Model Report
Accuracy : 0.86230
Optimal Boosters : 184
CPU times: user 3h 5min 22s, sys: 50.1 s, total: 3h 6min 12s
Wall time: 5min 12s
Iteration 50
Average Error: [[ 0.2182 0.24016667 0.16223333]]
High Bias
Iteration 100
Average Error: [[ 0.09921667 0.1815 0.10843333]]
tuned
Iteration 150
Average Error: [[ 0.0743 0.1673 0.0969]]
tuned
Model Report
Accuracy : 0.86230
Optimal Boosters : 184
CPU times: user 1h 33min 31s, sys: 30.7 s, total: 1h 34min 2s
Wall time: 2min 38s
Iteration 50
Average Error: [[ 0.2182 0.24016667 0.16223333]]
High Bias
Iteration 100
Average Error: [[ 0.09921667 0.1815 0.10843333]]
High Bias
Iteration 150
Average Error: [[ 0.06121667 0.16406667 0.0939 ]]
High Bias
Model Report
Accuracy : 0.86230
Optimal Boosters : 184
CPU times: user 1h 51min 46s, sys: 34.1 s, total: 1h 52min 20s
Wall time: 3min 9s
Iteration 75
Average Error: [[ 0.20981667 0.23406667 0.15626667]]
High Bias
Iteration 150
Average Error: [[ 0.08946667 0.17626667 0.10406667]]
tuned
Model Report
Accuracy : 0.86230
Optimal Boosters : 184
CPU times: user 1h 23min 44s, sys: 28.8 s, total: 1h 24min 13s
Wall time: 2min 22s
Iteration 75
Average Error: [[ 0.20981667 0.23406667 0.15626667]]
High Bias
Iteration 150
Average Error: [[ 0.08946667 0.17626667 0.10406667]]
High Bias
Model Report
Accuracy : 0.86230
Optimal Boosters : 184
CPU times: user 1h 30min 53s, sys: 31.6 s, total: 1h 31min 24s
Wall time: 2min 34s
Iteration 100
Average Error: [[ 0.20365 0.22853333 0.15116667]]
High Bias
Model Report
Accuracy : 0.86230
Optimal Boosters : 184
CPU times: user 1h 14min 8s, sys: 26.6 s, total: 1h 14min 35s
Wall time: 2min 6s
Iteration 100
Average Error: [[ 0.20365 0.22853333 0.15116667]]
High Bias
Model Report
Accuracy : 0.86230
Optimal Boosters : 184
CPU times: user 1h 14min 9s, sys: 28.2 s, total: 1h 14min 37s
Wall time: 2min 6s
Model Report
Accuracy : 0.86207
Optimal Boosters : 184
CPU times: user 1h 58min 33s, sys: 46.8 s, total: 1h 59min 20s
Wall time: 3min 23s
Model Report
Accuracy : 0.86207
Optimal Boosters : 184
CPU times: user 1h 59min 19s, sys: 48.5 s, total: 2h 7s
Wall time: 3min 24s
Iteration 25
Average Error: [[ 0.23346 0.246467 0.1718 ]]
High Bias
Iteration 50
Average Error: [[ 0.18274 0.20528867 0.13024467]]
High Bias
Iteration 75
Average Error: [[ 0.08182 0.16293333 0.09417767]]
tuned
Iteration 100
Average Error: [[ 0.05874667 0.14866667 0.082511 ]]
tuned
Iteration 125
Average Error: [[ 0.052 0.14273367 0.07835567]]
tuned
Iteration 150
Average Error: [[ 0.04939333 0.13926667 0.07564433]]
tuned
Iteration 175
Average Error: [[ 0.04766 0.13657767 0.07386667]]
tuned
Model Report
Accuracy : 0.86207
Optimal Boosters : 184
CPU times: user 6h 49min 54s, sys: 1min 26s, total: 6h 51min 21s
Wall time: 11min 30s
Iteration 25
Average Error: [[ 0.23346 0.246467 0.1718 ]]
High Bias
Iteration 50
Average Error: [[ 0.18274 0.20528867 0.13024467]]
High Bias
Iteration 75
Average Error: [[ 0.08182 0.16293333 0.09417767]]
High Bias
Iteration 100
Average Error: [[ 0.05682667 0.14893333 0.08335567]]
High Bias
Iteration 125
Average Error: [[ 0.05107333 0.144222 0.07864433]]
High Bias
Iteration 150
Average Error: [[ 0.04938667 0.142889 0.078022 ]]
High Variance
Iteration 175
Average Error: [[ 0.04957333 0.142289 0.076822 ]]
High Variance
Model Report
Accuracy : 0.86207
Optimal Boosters : 184
CPU times: user 6h 19min 31s, sys: 1min 29s, total: 6h 21min 1s
Wall time: 10min 39s
Iteration 50
Average Error: [[ 0.22328 0.237267 0.163711]]
High Bias
Iteration 100
Average Error: [[ 0.17365333 0.196711 0.123022 ]]
High Bias
Iteration 150
Average Error: [[ 0.06784 0.15444433 0.08675567]]
tuned
Model Report
Accuracy : 0.86207
Optimal Boosters : 184
CPU times: user 5h 17min 1s, sys: 1min 19s, total: 5h 18min 20s
Wall time: 8min 55s
Iteration 50
Average Error: [[ 0.22328 0.237267 0.163711]]
High Bias
Iteration 100
Average Error: [[ 0.17365333 0.196711 0.123022 ]]
High Bias
Iteration 150
Average Error: [[ 0.06784 0.15444433 0.08675567]]
High Bias
Model Report
Accuracy : 0.86207
Optimal Boosters : 184
CPU times: user 5h 32min 9s, sys: 1min 20s, total: 5h 33min 29s
Wall time: 9min 20s
Iteration 75
Average Error: [[ 0.21519333 0.229667 0.15613333]]
High Bias
Iteration 150
Average Error: [[ 0.16636 0.18973333 0.11717767]]
High Bias
Model Report
Accuracy : 0.86207
Optimal Boosters : 184
CPU times: user 3h 39min 42s, sys: 1min 6s, total: 3h 40min 48s
Wall time: 6min 12s
Iteration 75
Average Error: [[ 0.21519333 0.229667 0.15613333]]
High Bias
Iteration 150
Average Error: [[ 0.16636 0.18973333 0.11717767]]
High Bias
Model Report
Accuracy : 0.86207
Optimal Boosters : 184
CPU times: user 3h 40min 23s, sys: 1min 4s, total: 3h 41min 28s
Wall time: 6min 13s
Iteration 100
Average Error: [[ 0.20971333 0.224822 0.15113333]]
High Bias
Model Report
Accuracy : 0.86207
Optimal Boosters : 184
CPU times: user 2h 27min, sys: 52.7 s, total: 2h 27min 53s
Wall time: 4min 10s
Iteration 100
Average Error: [[ 0.20971333 0.224822 0.15113333]]
High Bias
Model Report
Accuracy : 0.86207
Optimal Boosters : 184
CPU times: user 2h 25min 45s, sys: 52.7 s, total: 2h 26min 37s
Wall time: 4min 9s
Model Report
Accuracy : 0.86144
Optimal Boosters : 184
CPU times: user 2h 56min 46s, sys: 1min 9s, total: 2h 57min 55s
Wall time: 5min 2s
Model Report
Accuracy : 0.86144
Optimal Boosters : 184
CPU times: user 2h 58min 1s, sys: 1min 9s, total: 2h 59min 10s
Wall time: 5min 4s
Iteration 25
Average Error: [[ 0.24047567 0.246278 0.17492567]]
High Bias
Iteration 50
Average Error: [[ 0.17092 0.18666667 0.117926 ]]
High Bias
Iteration 75
Average Error: [[ 0.15246667 0.173426 0.10427767]]
High Bias
Iteration 100
Average Error: [[ 0.08254233 0.151537 0.08542567]]
tuned
Iteration 125
Average Error: [[ 0.06225767 0.14461133 0.07994467]]
tuned
Iteration 150
Average Error: [[ 0.0548 0.14068533 0.07705567]]
tuned
Iteration 175
Average Error: [[ 0.050969 0.137278 0.074963]]
tuned
Model Report
Accuracy : 0.86144
Optimal Boosters : 184
CPU times: user 9h 53min 39s, sys: 2min 4s, total: 9h 55min 43s
Wall time: 16min 39s
Iteration 25
Average Error: [[ 0.24047567 0.246278 0.17492567]]
High Bias
Iteration 50
Average Error: [[ 0.17092 0.18666667 0.117926 ]]
High Bias
Iteration 75
Average Error: [[ 0.15246667 0.173426 0.10427767]]
High Bias
Iteration 100
Average Error: [[ 0.08254233 0.151537 0.08542567]]
High Bias
Iteration 125
Average Error: [[ 0.05948 0.14381467 0.07922233]]
High Bias
Iteration 150
Average Error: [[ 0.05193767 0.13940733 0.07624067]]
High Bias
Iteration 175
Average Error: [[ 0.04895967 0.13725933 0.074185 ]]
High Variance
Model Report
Accuracy : 0.86144
Optimal Boosters : 184
CPU times: user 10h 24min 16s, sys: 2min 12s, total: 10h 26min 29s
Wall time: 17min 30s
Iteration 50
Average Error: [[ 0.22959533 0.235722 0.16487033]]
High Bias
Iteration 100
Average Error: [[ 0.15915133 0.17692633 0.10970367]]
High Bias
Iteration 150
Average Error: [[ 0.139382 0.16331467 0.096037 ]]
High Bias
Model Report
Accuracy : 0.86144
Optimal Boosters : 184
CPU times: user 6h 38min 58s, sys: 1min 34s, total: 6h 40min 32s
Wall time: 11min 14s
Iteration 50
Average Error: [[ 0.22959533 0.235722 0.16487033]]
High Bias
Iteration 100
Average Error: [[ 0.15915133 0.17692633 0.10970367]]
High Bias
Iteration 150
Average Error: [[ 0.139382 0.16331467 0.096037 ]]
High Bias
Model Report
Accuracy : 0.86144
Optimal Boosters : 184
CPU times: user 6h 38min 6s, sys: 1min 31s, total: 6h 39min 38s
Wall time: 11min 12s
Iteration 75
Average Error: [[ 0.221782 0.22794433 0.15774067]]
High Bias
Iteration 150
Average Error: [[ 0.15099567 0.17118533 0.10390767]]
High Bias
Model Report
Accuracy : 0.86144
Optimal Boosters : 184
CPU times: user 4h 52min 52s, sys: 1min 14s, total: 4h 54min 6s
Wall time: 8min 16s
Iteration 75
Average Error: [[ 0.221782 0.22794433 0.15774067]]
High Bias
Iteration 150
Average Error: [[ 0.15099567 0.17118533 0.10390767]]
High Bias
Model Report
Accuracy : 0.86144
Optimal Boosters : 184
CPU times: user 4h 52min 8s, sys: 1min 15s, total: 4h 53min 24s
Wall time: 8min 15s
Iteration 100
Average Error: [[ 0.21593333 0.22127767 0.15194467]]
High Bias
Model Report
Accuracy : 0.86144
Optimal Boosters : 184
CPU times: user 4h 26min 10s, sys: 1min 16s, total: 4h 27min 26s
Wall time: 7min 32s
Iteration 100
Average Error: [[ 0.21593333 0.22127767 0.15194467]]
High Bias
Model Report
Accuracy : 0.86144
Optimal Boosters : 184
CPU times: user 4h 25min 59s, sys: 1min 20s, total: 4h 27min 20s
Wall time: 7min 31s
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-8-eaee1388d775> in <module>()
7
8 context = hf.get_new_context(version_list)
----> 9 datasets, labels = hf.load_dataset(dataset, context)
10
11 for interval in intervals:
/datadisk/public/predkt/tuner/ngtuner/helper_functions.py in load_dataset(name, context)
139 test_dataset = data['test_dataset']
140 length = valid_dataset.shape[0]
--> 141 test_dataset = test_dataset.reshape(length, image_size*image_size)
142
143 valid_labels = data['valid_labels']
ValueError: cannot reshape array of size 14112000 into shape (30000,784)