In this exercise, reproduce some of the findings from What Makes Houston the Next Great American City? | Travel | Smithsonian, specifically the calculation represented in
whose caption is
To assess the parity of the four major U.S. ethnic and racial groups, Rice University researchers used a scale called the Entropy Index. It ranges from 0 (a population has just one group) to 1 (all groups are equivalent). Edging New York for the most balanced diversity, Houston had an Entropy Index of 0.874 (orange bar).
The research report by Smithsonian Magazine is Houston Region Grows More Racially/Ethnically Diverse, With Small Declines in Segregation: A Joint Report Analyzing Census Data from 1990, 2000, and 2010 by the Kinder Institute for Urban Research & the Hobby Center for the Study of Texas.
In the report, you'll find the following quotes:
How does Houston’s racial/ethnic diversity compare to the racial/ethnic diversity of other large metropolitan areas? The Houston metropolitan area is the most racially/ethnically diverse.
....
Houston is one of the most racially/ethnically diverse metropolitan areas in the nation as well. *It is the most diverse of the 10 largest U.S. metropolitan areas.* [emphasis mine] Unlike the other large metropolitan areas, all four major racial/ethnic groups have substantial representation in Houston with Latinos and Anglos occupying roughly equal shares of the population.
....
Houston has the highest entropy score of the 10 largest metropolitan areas, 0.874. New York is a close second with a score of 0.872.
....
Your task is:
Tabulate all the metropolian/micropolitan statistical areas. Remember that you have to group various entities that show up separately in the Census API but which belong to the same area. You should find 942 metropolitan/micropolitan statistical areas in the 2010 Census.
Calculate the normalized Shannon index (entropy5) using the categories of White, Black, Hispanic, Asian, and Other as outlined in the Day_07_G_Calculating_Diversity notebook
Calculate the normalized Shannon index (entropy4) by not considering the Other category. In other words, assume that the the total population is the sum of White, Black, Hispanic, and Asian.
Figure out how exactly the entropy score was calculated in the report from Rice University. Since you'll find that the entropy score reported matches neither entropy5 nor entropy4, you'll need to play around with the entropy calculation to figure how to use 4 categories to get the score for Houston to come out to "0.874" and that for NYC to be "0.872". [I think I've done so and get 0.873618 and
0.872729 respectively.]
Add a calculation of the Gini-Simpson diversity index using the five categories of White, Black, Hispanic, Asian, and Other.
Note where the Bay Area stands in terms of the diversity index.
For bonus points:
Deliverable:
msas_df.HAVE FUN: ASK QUESTIONS AND WORK TOGETHER
Below is testing code to help make sure you are on the right track. A key assumption made here is that you will end up with a Pandas DataFrame called msas_df, indexed by the FIPS code of a metropolitan/micropolitan area (e.g., Houston's code is 26420) and with the the following columns:
You should have 942 rows, one for each MSA. You can compare your results for entropy5, entropy_rice with mine.
In [43]:
# FILL IN WITH YOUR CODE
import census
import settings
import us
import time
from pandas import DataFrame, Series, Index
import pandas as pd
from itertools import islice
c = census.Census(key=settings.CENSUS_KEY)
In [44]:
# def msas(variables="NAME"):
# # tabulate a set of fips codes for the states
# states_fips = set([s.fips for s in us.states.STATES])
# geo = {'for':'metropolitan statistical area/micropolitan statistical area:*',
# 'in':'state:*'}
# for msa in c.sf1.get(variables, geo=geo):
# if msa['state'] in states_fips:
# yield msa
def msas(variables="NAME"):
for state in us.STATES:
geo = {'for':'metropolitan statistical area/micropolitan statistical area:*',
'in':'state:{state_fips}'.format(state_fips=state.fips)
}
for msa in c.sf1.get(variables, geo=geo):
yield msa
msa_list = list(islice(msas("NAME,P0010001"), None))
len(msa_list)
Out[44]:
In [45]:
msa_list[:5]
Out[45]:
In [46]:
df = DataFrame(msa_list)
In [82]:
df.groupby('metropolitan statistical area/micropolitan statistical area').count()
type(df)
Out[82]:
In [61]:
df[['P0010001', 'state']] = \
df[['P0010001', 'state']].astype('int')
In [92]:
#initially done like this
#grouped_msa = df.groupby('metropolitan statistical area/micropolitan statistical area').sum()
#---> groups by msa---> have name, popn, state as columns
#but did not work to get list of msa
#therefore changed the strategy to the following
grouped_msa = df.groupby('metropolitan statistical area/micropolitan statistical area')
In [94]:
s= grouped_msa['P0010001'].sum()
s
Out[94]:
In [201]:
type(s)
Out[201]:
In [ ]:
#to get the msa_ids
msa_ids = s.index
msa_ids
In [119]:
msa_ids
Out[119]:
In [111]:
#to access list of states of each msa
for msa in s.index:
print msa, s[msa],list(grouped_msa.get_group(msa).state)
In [73]:
def P005_range(n0,n1):
return tuple(('P005'+ "{i:04d}".format(i=i) for i in xrange(n0,n1)))
P005_vars = P005_range(1,18)
P005_vars_str = ",".join(P005_vars)
P005_vars_with_name = ['NAME'] + list(P005_vars)
# http://manishamde.github.io/blog/2013/03/07/pandas-and-python-top-10/#create
def convert_to_rdotmap(row):
"""takes the P005 variables and maps to a series with White, Black, Asian, Hispanic, Other
Total and Name"""
return pd.Series({'Total':row['P0050001'],
'White':row['P0050003'],
'Black':row['P0050004'],
'Asian':row['P0050006'],
'Hispanic':row['P0050010'],
'Other': row['P0050005'] + row['P0050007'] + row['P0050008'] + row['P0050009'],
'Name': row['NAME']
}, index=['Name', 'Total', 'White', 'Black', 'Hispanic', 'Asian', 'Other'])
def normalize(s):
"""take a Series and divide each item by the sum so that the new series adds up to 1.0"""
total = np.sum(s)
return s.astype('float') / total
def entropy(series):
"""Normalized Shannon Index"""
# a series in which all the entries are equal should result in normalized entropy of 1.0
# eliminate 0s
series1 = series[series!=0]
# if len(series) < 2 (i.e., 0 or 1) then return 0
if len(series) > 1:
# calculate the maximum possible entropy for given length of input series
max_s = -np.log(1.0/len(series))
total = float(sum(series1))
p = series1.astype('float')/float(total)
return sum(-p*np.log(p))/max_s
else:
return 0.0
def convert_P005_to_int(df):
# do conversion in place
df[list(P005_vars)] = df[list(P005_vars)].astype('int')
return df
def diversity(r):
"""Returns a DataFrame with the following columns
"""
df = DataFrame(r)
df = convert_P005_to_int(df)
# df[list(P005_vars)] = df[list(P005_vars)].astype('int')
df1 = df.apply(convert_to_rdotmap, axis=1)
df1['entropy5'] = df1[['Asian','Black','Hispanic','White','Other']].apply(entropy,axis=1)
df1['entropy4'] = df1[['Asian','Black','Hispanic','White']].apply(entropy,axis=1)
return df1
In [225]:
#http://api.census.gov/data/2010/sf1?get=P0010001&for=metropolitan+statistical+area/micropolitan+statistical+area:11260&in=state:02
def get_all_msas(variables='NAME'):
count = 0
for msa in s.index:
for state in list(grouped_msa.get_group(msa).state):
geo = {'for':'metropolitan statistical area/micropolitan statistical area:{msa_fips}'.format(msa_fips=msa),
'in':'state:{state_fips}'.format(state_fips=state)
}
for each_msa in c.sf1.get(variables, geo=geo):
count +=1
if msa == '35620':
print state
print each_msa
yield each_msa
In [226]:
r = list(get_all_msas(P005_vars_with_name))
In [227]:
len(r)
Out[227]:
In [316]:
test1= DataFrame(r)
len(test1)
test1 = test1.apply(convert_P005_to_int, axis=1)
test1 = test1.groupby('metropolitan statistical area/micropolitan statistical area').sum()
test1.head()
Out[316]:
In [309]:
import numpy as np
df_diversity = diversity(test1)
df_diversity
In [299]:
temp_diversity = df_diversity
In [263]:
type(df_diversity)
Out[263]:
In [264]:
#'Asian','Black','Hispanic', 'Other', 'Total', 'White',
# 'entropy4', 'entropy5', 'entropy_rice', 'gini_simpson',
#'p_Asian', 'p_Black', 'p_Hispanic', 'p_Other','p_White'
df_diversity['p_Asian'] = df_diversity['Asian']/df_diversity['Total']
df_diversity['p_Black'] = df_diversity['Black']/df_diversity['Total']
df_diversity['p_Hispanic'] = df_diversity['Hispanic']/df_diversity['Total']
df_diversity['p_Other'] = df_diversity['Other']/df_diversity['Total']
df_diversity['p_White'] = df_diversity['White']/df_diversity['Total']
In [265]:
def entropyRice(series):
"""Normalized Shannon Index"""
# a series in which all the entries are equal should result in normalized entropy of 1.0
# eliminate 0s
series1 = series[series!=0]
if len(series) > 1:
# calculate the maximum possible entropy for given length of input series
max_s = -np.log(1.0/len(series))
total = float(sum(series1))
p = series1.astype('float')/float(total)
# print series['Other']
p_other = series['Other'].astype('float')/float(total)
E_other = -(p_other*np.log(p_other))/max_s
# print E_other
return (sum(-p*np.log(p))/max_s) - E_other
else:
return 0.0
def giniSimpson(series):
"""Normalized Shannon Index"""
# a series in which all the entries are equal should result in normalized entropy of 1.0
# eliminate 0s
series1 = series[series!=0]
if len(series) > 1:
# calculate the maximum possible entropy for given length of input series
max_s = -np.log(1.0/len(series))
total = float(sum(series1))
p = series1.astype('float')/float(total)
return sum(p*(1-p))
else:
return 0.0
df_diversity['gini_simpson'] = df_diversity[['Asian','Black','Hispanic','White','Other']].apply(giniSimpson,axis=1)
df_diversity['entropy_rice'] = df_diversity[['Asian','Black','Hispanic','White','Other']].apply(entropyRice,axis=1)
In [266]:
df_diversity.head()
Out[266]:
In [267]:
msas_df = df_diversity
#df_diversity.sort_index(by="entropy5", ascending=False).head()
In [285]:
assert len(msas_df) == 942
type(msas_df)
Out[285]:
In [317]:
top_10_metros = msas_df.sort_index(by='Total', ascending=False)[:10]
msa_codes_in_top_10_pop_sorted_by_entropy_rice = list(top_10_metros.sort_index(by='entropy_rice',
ascending=False).index)
type(top_10_metros)
top_10_metros
# msa_codes_in_top_10_pop_sorted_by_entropy_rice
to_unicode(msa_codes_in_top_10_pop_sorted_by_entropy_rice)
# [u'Houston-Sugar Land-Baytown, TX Metro Area',
# u'New York-Northern New Jersey-Long Island, NY-NJ-PA Metro Area (part)',
# u'Washington-Arlington-Alexandria, DC-VA-MD-WV Metro Area (part)',
# u'Los Angeles-Long Beach-Santa Ana, CA Metro Area',
# u'Dallas-Fort Worth-Arlington, TX Metro Area',
# u'Miami-Fort Lauderdale-Pompano Beach, FL Metro Area',
# u'Chicago-Joliet-Naperville, IL-IN-WI Metro Area (part)',
# u'Atlanta-Sandy Springs-Marietta, GA Metro Area',
# u'Philadelphia-Camden-Wilmington, PA-NJ-DE-MD Metro Area (part)',
# u'Boston-Cambridge-Quincy, MA-NH Metro Area (part)']
Out[317]:
In [155]:
# Testing code
def to_unicode(vals):
return [unicode(v) for v in vals]
def test_msas_df(msas_df):
min_set_of_columns = set(['Asian','Black','Hispanic', 'Other', 'Total', 'White',
'entropy4', 'entropy5', 'entropy_rice', 'gini_simpson','p_Asian', 'p_Black',
'p_Hispanic', 'p_Other','p_White'])
#--> what does this assert mean?
assert min_set_of_columns & set(msas_df.columns) == min_set_of_columns
# https://www.census.gov/geo/maps-data/data/tallies/national_geo_tallies.html
# 366 metro areas
# 576 micropolitan areas
assert len(msas_df) == 942
# total number of people in metro/micro areas
assert msas_df.Total.sum() == 289261315
assert msas_df['White'].sum() == 180912856
assert msas_df['Other'].sum() == 8540181
# list of msas in descendng order by entropy_rice
# calculate the top 10 metros by population
top_10_metros = msas_df.sort_index(by='Total', ascending=False)[:10]
msa_codes_in_top_10_pop_sorted_by_entropy_rice = list(top_10_metros.sort_index(by='entropy_rice',
ascending=False).index)
assert to_unicode(msa_codes_in_top_10_pop_sorted_by_entropy_rice)== [u'26420', u'35620', u'47900', u'31100', u'19100',
u'33100', u'16980', u'12060', u'37980', u'14460']
top_10_metro = msas_df.sort_index(by='Total', ascending=False)[:10]
list(top_10_metro.sort_index(by='entropy_rice', ascending=False)['entropy5'])
np.testing.assert_allclose(top_10_metro.sort_index(by='entropy_rice', ascending=False)['entropy5'],
[0.79628076626851163, 0.80528601550164602, 0.80809418318973791, 0.7980698349711991,
0.75945930510650161, 0.74913610558765376, 0.73683277781032397, 0.72964862063970914,
0.64082509648457675, 0.55697288400004963])
np.testing.assert_allclose(top_10_metro.sort_index(by='entropy_rice', ascending=False)['entropy_rice'],
[0.87361766576115552,
0.87272877244078051,
0.85931803868749834,
0.85508015237749468,
0.82169723530719896,
0.81953527301129059,
0.80589423784325431,
0.78602596561378812,
0.68611350427640316,
0.56978827050565117])
In [270]:
# you are on the right track if test_msas_df doesn't complain
test_msas_df(msas_df)
In [ ]:
# code to save your dataframe to a CSV
# upload the CSV to bCourses
# uncomment to run
# msas_df.to_csv("msas_2010.csv", encoding="UTF-8")
In [ ]:
# load back the CSV and test again
# df = DataFrame.from_csv("msas_2010.csv", encoding="UTF-8")
# test_msas_df(df)
In [ ]: