In [12]:
import tensorflow as tf 
import os 
from tensorflow.examples.tutorials.mnist import input_data
from tensorflow.contrib.tensorboard.plugins import projector

In [16]:
batch_size = 1024
LOG_DIR = 'logs'
metadata = os.path.join(LOG_DIR, 'metadata.tsv')
mnist = input_data.read_data_sets('MNIST_data')
batch_images, batch_labels = mnist.train.next_batch(batch_size)

images = tf.Variable(batch_images, name = 'images')

with open(metadata, 'w') as metadata_file:
    for row in batch_labels:
        metadata_file.write('%d\n' % row)

sess = tf.Session()
sess.run(tf.global_variables_initializer())
saver = tf.train.Saver([images])
#sess.run(images.initializer)
saver.save(sess, os.path.join(LOG_DIR, 'images.ckpt'))
config = projector.ProjectorConfig()
embedding = config.embeddings.add()
embedding.tensor_name = images.name
embedding.metadata_path = metadata
projector.visualize_embeddings(tf.summary.FileWriter(LOG_DIR), config)


Extracting MNIST_data/train-images-idx3-ubyte.gz
Extracting MNIST_data/train-labels-idx1-ubyte.gz
Extracting MNIST_data/t10k-images-idx3-ubyte.gz
Extracting MNIST_data/t10k-labels-idx1-ubyte.gz

In [ ]: