=> Will Restore:
=> <tf.Variable 'conv1/weights:0' shape=(11, 11, 3, 96) dtype=float32_ref>
=> <tf.Variable 'conv1/biases:0' shape=(96,) dtype=float32_ref>
=> <tf.Variable 'conv2/weights:0' shape=(5, 5, 48, 256) dtype=float32_ref>
=> <tf.Variable 'conv2/biases:0' shape=(256,) dtype=float32_ref>
=> <tf.Variable 'conv3/weights:0' shape=(3, 3, 256, 384) dtype=float32_ref>
=> <tf.Variable 'conv3/biases:0' shape=(384,) dtype=float32_ref>
=> <tf.Variable 'conv4/weights:0' shape=(3, 3, 192, 384) dtype=float32_ref>
=> <tf.Variable 'conv4/biases:0' shape=(384,) dtype=float32_ref>
=> <tf.Variable 'conv5/weights:0' shape=(3, 3, 192, 256) dtype=float32_ref>
=> <tf.Variable 'conv5/biases:0' shape=(256,) dtype=float32_ref>
=> Will train:
=> <tf.Variable 'fc6/weights:0' shape=(9216, 4096) dtype=float32_ref>
=> <tf.Variable 'fc6/biases:0' shape=(4096,) dtype=float32_ref>
=> <tf.Variable 'fc7/weights:0' shape=(4096, 4096) dtype=float32_ref>
=> <tf.Variable 'fc7/biases:0' shape=(4096,) dtype=float32_ref>
=> <tf.Variable 'fc8/weights:0' shape=(4096, 2) dtype=float32_ref>
=> <tf.Variable 'fc8/biases:0' shape=(2,) dtype=float32_ref>
=> Learningrate: 0.0050
=> Batchsize: 32
=> Dropout: 0.0000
##################################
=> Restoring weights from numpy file: ./weights/bvlc_alexnet.npy
2017-10-03 22:20:53.361642 Epoch number: 1
2017-10-03 22:20:53.362101 Start training...
2017-10-03 22:21:31.689822 Start validation...
2017-10-03 22:21:35.010682 Validation Accuracy = 0.4791666667
2017-10-03 22:21:35.017060 Epoch number: 2
2017-10-03 22:21:35.017124 Start training...
2017-10-03 22:22:13.719673 Start validation...
2017-10-03 22:22:17.075630 Validation Accuracy = 0.4791666667
2017-10-03 22:22:17.081772 Epoch number: 3
2017-10-03 22:22:17.081848 Start training...
---------------------------------------------------------------------------
KeyboardInterrupt Traceback (most recent call last)
<ipython-input-4-17e47fa005b9> in <module>()
10 device=device,
11 show_misclassified=True,
---> 12 validate_on_each_epoch=True
13 )
/Users/philipp/Uni/Masterarbeit/code/finetuneAlexVGG/helper/retrainer.py in run(self, finetune_layers, epochs, learning_rate, batch_size, keep_prob, memory_usage, device, show_misclassified, validate_on_each_epoch, ckpt_file)
236 epoch,
237 summary_op,
--> 238 writer
239 )
240
/Users/philipp/Uni/Masterarbeit/code/finetuneAlexVGG/helper/retrainer.py in run_training(self, sess, train_op, iterator_op, get_next_batch_op, ph_images, ph_labels, ph_keep_prob, keep_prob, batches, epoch, summary_op, writer)
285 sess.run(
286 train_op,
--> 287 feed_dict={ph_images: img_batch, ph_labels: label_batch, ph_keep_prob: keep_prob}
288 )
289
/Users/philipp/Envs/tf/lib/python2.7/site-packages/tensorflow/python/client/session.pyc in run(self, fetches, feed_dict, options, run_metadata)
893 try:
894 result = self._run(None, fetches, feed_dict, options_ptr,
--> 895 run_metadata_ptr)
896 if run_metadata:
897 proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)
/Users/philipp/Envs/tf/lib/python2.7/site-packages/tensorflow/python/client/session.pyc in _run(self, handle, fetches, feed_dict, options, run_metadata)
1122 if final_fetches or final_targets or (handle and feed_dict_tensor):
1123 results = self._do_run(handle, final_targets, final_fetches,
-> 1124 feed_dict_tensor, options, run_metadata)
1125 else:
1126 results = []
/Users/philipp/Envs/tf/lib/python2.7/site-packages/tensorflow/python/client/session.pyc in _do_run(self, handle, target_list, fetch_list, feed_dict, options, run_metadata)
1319 if handle is None:
1320 return self._do_call(_run_fn, self._session, feeds, fetches, targets,
-> 1321 options, run_metadata)
1322 else:
1323 return self._do_call(_prun_fn, self._session, handle, feeds, fetches)
/Users/philipp/Envs/tf/lib/python2.7/site-packages/tensorflow/python/client/session.pyc in _do_call(self, fn, *args)
1325 def _do_call(self, fn, *args):
1326 try:
-> 1327 return fn(*args)
1328 except errors.OpError as e:
1329 message = compat.as_text(e.message)
/Users/philipp/Envs/tf/lib/python2.7/site-packages/tensorflow/python/client/session.pyc in _run_fn(session, feed_dict, fetch_list, target_list, options, run_metadata)
1304 return tf_session.TF_Run(session, options,
1305 feed_dict, fetch_list, target_list,
-> 1306 status, run_metadata)
1307
1308 def _prun_fn(session, handle, feed_dict, fetch_list):
KeyboardInterrupt: