In [9]:
# ------------------------------------------------- +
# Using Pre-Trained Model without modifications
# > py36, tf, keras, opencv, pillow
# ------------------------------------------------- +
import tensorflow as tf
import keras as keras
In [10]:
from keras.applications import ResNet50
from keras.applications import InceptionV3
from keras.applications import Xception # TensorFlow ONLY
from keras.applications import VGG16
from keras.applications import VGG19
from keras.applications import imagenet_utils
from keras.applications.inception_v3 import preprocess_input
from keras.preprocessing.image import img_to_array
from keras.preprocessing.image import load_img
import numpy as np
import argparse
import cv2
In [11]:
# https://keras.io/applications/
model = VGG19(weights="imagenet")
In [12]:
inputShape = (224, 224)
preprocess = imagenet_utils.preprocess_input
if model in ("inception", "xception"):
inputShape = (299, 299)
preprocess = preprocess_input
In [13]:
img = load_img('images/tv.png', target_size=(224,224))
x = img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess(x)
In [14]:
preds = model.predict(x)
print('Predicted:', imagenet_utils.decode_predictions(preds))
In [ ]:
# --