In [1]:
%pylab inline
In [2]:
log_folder = 'ik-learning/logs/gridsearch/'
tc = load('ik-learning/tc-150.npy')
names = ('rm-knn-default', 'rg-knn-default', 'dpg-knn-default')
In [3]:
import os
import glob
import pickle
from collections import defaultdict
logs = {}
for name in names:
xps = glob.glob('{}/{}-*.logs'.format(log_folder, name))
l = []
for xp in xps:
with open(xp) as f:
l.append(pickle.load(f))
logs[name] = l
print len(l), 'log(s) found for', name
In [4]:
%pylab inline
from mpltools import special
def plot_one(name):
err = [xp.eval_errors for xp in logs[name]]
if not err:
return
err = array(err)
special.errorfill(x=xp.eval_at, y=err.mean(axis=-1).mean(axis=0),
yerr=err.std(axis=-1).mean(axis=0) / sqrt(len(err)))
ylim(0, 0.5)
from IPython.html.widgets import interact
interact(plot_one, name=names)
In [7]:
def plot_compare(*poss):
[plot_one(n) for n in poss]
labels = ['{}'.format(n) for n in poss]
legend(labels)#, loc='lower left')
In [10]:
plot_compare(('rm-knn-default'),
('rg-knn-default'),
('dpg-knn-default'))
#xlim(0, 500)
In [17]:
plot_compare(('random', 'goal', 'ilo-gmm'),
('random', 'motor', 'ilo-gmm'),
('discretized_progress', 'goal', 'ilo-gmm'))
In [16]:
with open(glob.glob(log_folder + 'rg-knn-default-*.logs')[1]) as f:
goal_xp = pickle.load(f)
ax = axes()
#motor_xp.scatter_plot(ax, (('sensori', [1, 2]), ), color='r')
goal_xp.scatter_plot(ax, (('sensori', [0, 1]), ), color='b')
goal_xp.scatter_plot(ax, (('choice', [0, 1]), ), color='r', marker='+')
scatter(tc[:, 0], tc[:, 1], color='r', s=40)
Out[16]:
In [22]:
with open(glob.glob(log_folder + 'dpg-knn-default-*.logs')[8]) as f:
goal_xp = pickle.load(f)
ax = axes()
#motor_xp.scatter_plot(ax, (('sensori', [1, 2]), ), color='r')
goal_xp.scatter_plot(ax, (('sensori', [0, 1]), ), color='b')
goal_xp.scatter_plot(ax, (('choice', [0, 1]), ), color='r', marker='+')
scatter(tc[:, 0], tc[:, 1], color='r', s=40)
Out[22]:
In [ ]: