In [1]:
%matplotlib inline
from matplotlib import pyplot as plt
import seaborn as sns
In [2]:
import antipackage
from github.ellisonbg.misc import vizarray as va
In [3]:
import numpy as np
In [4]:
data = [0,2,4,6]
a = np.array(data)
In [5]:
type(a)
Out[5]:
In [6]:
a
Out[6]:
In [7]:
va.vizarray(a)
Out[7]:
In [8]:
a.shape
Out[8]:
In [9]:
a.ndim
Out[9]:
In [10]:
a.size
Out[10]:
In [11]:
a.nbytes
Out[11]:
In [12]:
a.dtype
Out[12]:
In [14]:
data = [[0.0,2.0,4.0,6.0],[1.0,3.0,5.0,7.0]]
b=np.array(data)
In [15]:
b
Out[15]:
In [16]:
va.vizarray(b)
Out[16]:
In [17]:
b.shape, b.ndim, b.size, b.nbytes
Out[17]:
In [18]:
c = np.arange(0.0,10.0,1.0)
c
Out[18]:
In [20]:
e = np.linspace(0.0,5.0,11)
e
Out[20]:
In [21]:
np.empty((4,4))
Out[21]:
In [22]:
np.zeros((3,3))
Out[22]:
In [23]:
np.ones((3,3
))
Out[23]:
In [25]:
a = np.array([0,1,2,3])
In [26]:
a, a.dtype
Out[26]:
In [29]:
b = np.zeros((2,2), dtype=np.complex64)
b
Out[29]:
In [30]:
c = np.arange(0,10,2,dtype=np.float)
c
Out[30]:
In [31]:
d=c.astype(dtype=np.int)
d
Out[31]:
In [32]:
np.float*?
In [35]:
a = np.empty((3,3))
a.fill(0.1)
a
Out[35]:
In [36]:
b = np.ones((3,3))
b
Out[36]:
In [34]:
a+b
In [37]:
b/a
Out[37]:
In [38]:
a**2
Out[38]:
In [39]:
np.pi*b
Out[39]:
In [45]:
a= np.random.rand(10,10)
In [46]:
va.enable()
In [47]:
a
Out[47]:
In [ ]:
In [ ]: