Integration Exercise 1

Imports


In [1]:
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
from scipy import integrate

Trapezoidal rule

The trapezoidal rule generates a numerical approximation to the 1d integral:

$$ I(a,b) = \int_a^b f(x) dx $$

by dividing the interval $[a,b]$ into $N$ subdivisions of length $h$:

$$ h = (b-a)/N $$

Note that this means the function will be evaluated at $N+1$ points on $[a,b]$. The main idea of the trapezoidal rule is that the function is approximated by a straight line between each of these points.

Write a function trapz(f, a, b, N) that performs trapezoidal rule on the function f over the interval $[a,b]$ with N subdivisions (N+1 points).


In [3]:
integrate?

In [7]:
def trapz(f, a, b, N):
    """Integrate the function f(x) over the range [a,b] with N points."""
    
    h = (b-a)/N
    k = np.arange(1,N)
    area = h*(0.5*f(a) + 0.5*f(b) + f(a+k*h).sum())
    return area

In [8]:
f = lambda x: x**2
g = lambda x: np.sin(x)

In [9]:
I = trapz(f, 0, 1, 1000)
assert np.allclose(I, 0.33333349999999995)
J = trapz(g, 0, np.pi, 1000)
assert np.allclose(J, 1.9999983550656628)

Now use scipy.integrate.quad to integrate the f and g functions and see how the result compares with your trapz function. Print the results and errors.


In [19]:
trapz(f,0,1,1000)


Out[19]:
0.33333349999999995

In [22]:
trapz(g,0,np.pi,1000)


Out[22]:
1.9999983550656624

In [16]:
I ,err=integrate.quad(f,0,1)
print(I)
print(err)


0.33333333333333337
3.700743415417189e-15

In [20]:
I,err = integrate.quad(g,0,np.pi)
print(I)
print(err)


2.0
2.220446049250313e-14

In [ ]:
assert True # leave this cell to grade the previous one