Face Generation

In this project, you'll use generative adversarial networks to generate new images of faces.

Get the Data

You'll be using two datasets in this project:

  • MNIST
  • CelebA

Since the celebA dataset is complex and you're doing GANs in a project for the first time, we want you to test your neural network on MNIST before CelebA. Running the GANs on MNIST will allow you to see how well your model trains sooner.

If you're using FloydHub, set data_dir to "/input" and use the FloydHub data ID "R5KrjnANiKVhLWAkpXhNBe".


In [1]:
data_dir = './data'

# FloydHub - Use with data ID "R5KrjnANiKVhLWAkpXhNBe"
#data_dir = '/input'


"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
import helper

helper.download_extract('mnist', data_dir)
helper.download_extract('celeba', data_dir)


Found mnist Data
Found celeba Data

Explore the Data

MNIST

As you're aware, the MNIST dataset contains images of handwritten digits. You can view the first number of examples by changing show_n_images.


In [2]:
show_n_images = 16

"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
%matplotlib inline
import os
from glob import glob
from matplotlib import pyplot

mnist_images = helper.get_batch(glob(os.path.join(data_dir, 'mnist/*.jpg'))[:show_n_images], 28, 28, 'L')
pyplot.imshow(helper.images_square_grid(mnist_images, 'L'), cmap='gray')


Out[2]:
<matplotlib.image.AxesImage at 0x243f63319e8>

CelebA

The CelebFaces Attributes Dataset (CelebA) dataset contains over 200,000 celebrity images with annotations. Since you're going to be generating faces, you won't need the annotations. You can view the first number of examples by changing show_n_images.


In [3]:
show_n_images = 16

"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
mnist_images = helper.get_batch(glob(os.path.join(data_dir, 'img_align_celeba/*.jpg'))[:show_n_images], 28, 28, 'RGB')
pyplot.imshow(helper.images_square_grid(mnist_images, 'RGB'))


Out[3]:
<matplotlib.image.AxesImage at 0x243f63e5e10>

Preprocess the Data

Since the project's main focus is on building the GANs, we'll preprocess the data for you. The values of the MNIST and CelebA dataset will be in the range of -0.5 to 0.5 of 28x28 dimensional images. The CelebA images will be cropped to remove parts of the image that don't include a face, then resized down to 28x28.

The MNIST images are black and white images with a single color channel while the CelebA images have 3 color channels (RGB color channel).

Build the Neural Network

You'll build the components necessary to build a GANs by implementing the following functions below:

  • model_inputs
  • discriminator
  • generator
  • model_loss
  • model_opt
  • train

Check the Version of TensorFlow and Access to GPU

This will check to make sure you have the correct version of TensorFlow and access to a GPU


In [4]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
from distutils.version import LooseVersion
import warnings
import tensorflow as tf

# Check TensorFlow Version
assert LooseVersion(tf.__version__) >= LooseVersion('1.0'), \
    'Please use TensorFlow version 1.0 or newer.  You are using {}'.format(tf.__version__)
print('TensorFlow Version: {}'.format(tf.__version__))

# Check for a GPU
if not tf.test.gpu_device_name():
    warnings.warn('No GPU found. Please use a GPU to train your neural network.')
else:
    print('Default GPU Device: {}'.format(tf.test.gpu_device_name()))


TensorFlow Version: 1.1.0
Default GPU Device: /gpu:0

Input

Implement the model_inputs function to create TF Placeholders for the Neural Network. It should create the following placeholders:

  • Real input images placeholder with rank 4 using image_width, image_height, and image_channels.
  • Z input placeholder with rank 2 using z_dim.
  • Learning rate placeholder with rank 0.

Return the placeholders in the following the tuple (tensor of real input images, tensor of z data)


In [5]:
import problem_unittests as tests

def model_inputs(image_width, image_height, image_channels, z_dim):
    """
    Create the model inputs
    :param image_width: The input image width
    :param image_height: The input image height
    :param image_channels: The number of image channels
    :param z_dim: The dimension of Z
    :return: Tuple of (tensor of real input images, tensor of z data, learning rate)
    """
    # TODO: Implement Function
    input_image = tf.placeholder(tf.float32,[None,image_width,image_height,image_channels])
    tensor_Z = tf.placeholder(tf.float32,[None,z_dim])
    learn_rate = tf.placeholder(tf.float32)
    return input_image, tensor_Z, learn_rate


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_model_inputs(model_inputs)


Tests Passed

Discriminator

Implement discriminator to create a discriminator neural network that discriminates on images. This function should be able to reuse the variables in the neural network. Use tf.variable_scope with a scope name of "discriminator" to allow the variables to be reused. The function should return a tuple of (tensor output of the discriminator, tensor logits of the discriminator).


In [58]:
def discriminator(images, reuse=False):
    """
    Create the discriminator network
    :param images: Tensor of input image(s)
    :param reuse: Boolean if the weights should be reused
    :return: Tuple of (tensor output of the discriminator, tensor logits of the discriminator)
    """
    # TODO: Implement Function
    alpha=0.19
    batchSize,height_i,width_i,deepth_i = images.get_shape().as_list()
    kernal_size = 5
    stridesNum = 2
    with tf.variable_scope('discriminator',reuse=reuse):
        # Input layer is height_i x width_i x deepth_i
        Layer1 = tf.layers.conv2d(images, 64, kernal_size, strides=stridesNum, padding='same',\
                                  kernel_initializer=tf.contrib.layers.xavier_initializer())
        relu1 = tf.maximum(alpha * Layer1, Layer1)
        relu1 = tf.nn.dropout(relu1,0.8)
        # Now height_i-kernal_size x width_i/2 x 64
        #print(relu1.shape)
        
        Layer2 = tf.layers.conv2d(relu1, 128, kernal_size, strides=stridesNum, padding='same',\
                                  kernel_initializer=tf.contrib.layers.xavier_initializer())
        bn2 = tf.layers.batch_normalization(Layer2, training=True)
        relu2 = tf.maximum(alpha * bn2, bn2)
        relu2 = tf.nn.dropout(relu2,0.8)
        # height_i/4 x width_i/4 x 128
        #print(relu2.shape)
        
        Layer3 = tf.layers.conv2d(relu2, 256, kernal_size, strides=stridesNum, padding='same',\
                                  kernel_initializer=tf.contrib.layers.xavier_initializer())
        bn3 = tf.layers.batch_normalization(Layer3, training=True)
        relu3 = tf.maximum(alpha * bn3, bn3)
        relu3 = tf.nn.dropout(relu3,0.8)
        # height_i/8 x width_i/8 x 256
        #print(relu3.shape)
        
        Layer4 = tf.layers.conv2d(relu3, 512, kernal_size, strides=stridesNum, padding='same',\
                                  kernel_initializer=tf.contrib.layers.xavier_initializer())
        bn4 = tf.layers.batch_normalization(Layer4, training=True)
        relu4 = tf.maximum(alpha * bn4, bn4)
        relu4 = tf.nn.dropout(relu4,0.8)
        # height_i/8 x width_i/8 x 256
        #print(relu4.shape)

        # Flatten it
        flat = tf.reshape(relu4, (-1, 4*4*512))
        logits = tf.layers.dense(flat, 1)
        #print(logits.shape)
        outputs = tf.sigmoid(logits)
    return outputs, logits


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_discriminator(discriminator, tf)


Tests Passed

Generator

Implement generator to generate an image using z. This function should be able to reuse the variables in the neural network. Use tf.variable_scope with a scope name of "generator" to allow the variables to be reused. The function should return the generated 28 x 28 x out_channel_dim images.


In [59]:
def generator(z, out_channel_dim, is_train=True):
    """
    Create the generator network
    :param z: Input z
    :param out_channel_dim: The number of channels in the output image
    :param is_train: Boolean if generator is being used for training
    :return: The tensor output of the generator
    """
    # TODO: Implement Function
    with tf.variable_scope('generator',reuse=not is_train):
        kernal_size = 5
        strideNum = 2
        alpha=0.2
        # First fully connected layer
        gLayer1 = tf.layers.dense(z, 4*4*512)
        # Reshape it to start the convolutional stack
        gLayer1 = tf.reshape(gLayer1, (-1,4,4, 512))
        gLayer1 = tf.layers.batch_normalization(gLayer1, training=is_train)
        relu1 = tf.maximum(alpha * gLayer1, gLayer1)
        # 5x5x256 now
        #print(relu1.shape)        
        gLayer2 = tf.layers.conv2d_transpose(relu1, 256, 4, strides=1, padding='valid',\
                                             kernel_initializer=tf.contrib.layers.xavier_initializer())
        gLayer2 = tf.layers.batch_normalization(gLayer2, training=is_train)
        relu2 = tf.maximum(alpha * gLayer2, gLayer2)
        relu2 = tf.nn.dropout(relu2,0.8)
        #print(relu2.shape)
        gLayer3 = tf.layers.conv2d_transpose(relu2, 128, kernal_size, strides=strideNum, padding='same',\
                                             kernel_initializer=tf.contrib.layers.xavier_initializer())
        gLayer3 = tf.layers.batch_normalization(gLayer3, training=is_train)
        relu3 = tf.maximum(alpha * gLayer3, gLayer3)
        relu3 = tf.nn.dropout(relu3,0.8)
        # 14x14x128 now
        #print(relu3.shape)        
        gLayer4 = tf.layers.conv2d_transpose(relu3, 64, kernal_size, strides=strideNum, padding='same',\
                                  kernel_initializer=tf.contrib.layers.xavier_initializer())
        gLayer4 = tf.layers.batch_normalization(gLayer4, training=is_train)
        relu4 = tf.maximum(alpha * gLayer4, gLayer4)
        relu4 = tf.nn.dropout(relu4,0.8)
        # 14x14x128 now
        #print(relu4.shape)        
        # Output layer
        g_logits = tf.layers.conv2d_transpose(relu4, out_channel_dim, kernal_size, strides=1, padding='same',\
                                  kernel_initializer=tf.contrib.layers.xavier_initializer())
        # 28x28 x out_channel_dim now
        #print(g_logits.shape)        
        g_outputs = tf.tanh(g_logits)
    return g_outputs


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_generator(generator, tf)


Tests Passed

Loss

Implement model_loss to build the GANs for training and calculate the loss. The function should return a tuple of (discriminator loss, generator loss). Use the following functions you implemented:

  • discriminator(images, reuse=False)
  • generator(z, out_channel_dim, is_train=True)

In [60]:
def model_loss(input_real, input_z, out_channel_dim):
    """
    Get the loss for the discriminator and generator
    :param input_real: Images from the real dataset
    :param input_z: Z input
    :param out_channel_dim: The number of channels in the output image
    :return: A tuple of (discriminator loss, generator loss)
    """
    # TODO: Implement Function
    g_model = generator(input_z, out_channel_dim)
    d_model_real, d_logits_real = discriminator(input_real)
    d_model_fake, d_logits_fake = discriminator(g_model, reuse=True)

    d_loss_real = tf.reduce_mean(
        tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_real, labels=tf.ones_like(d_model_real)*0.9))
    d_loss_fake = tf.reduce_mean(
        tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake, labels=tf.zeros_like(d_model_fake)))
    g_loss = tf.reduce_mean(
        tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake, labels=tf.ones_like(d_model_fake)))

    d_loss = d_loss_real + d_loss_fake
    return d_loss, g_loss


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_model_loss(model_loss)


Tests Passed

Optimization

Implement model_opt to create the optimization operations for the GANs. Use tf.trainable_variables to get all the trainable variables. Filter the variables with names that are in the discriminator and generator scope names. The function should return a tuple of (discriminator training operation, generator training operation).


In [61]:
def model_opt(d_loss, g_loss, learning_rate, beta1):
    """
    Get optimization operations
    :param d_loss: Discriminator loss Tensor
    :param g_loss: Generator loss Tensor
    :param learning_rate: Learning Rate Placeholder
    :param beta1: The exponential decay rate for the 1st moment in the optimizer
    :return: A tuple of (discriminator training operation, generator training operation)
    """
    # TODO: Implement Function
    t_vars = tf.trainable_variables()
    d_vars = [var for var in t_vars if var.name.startswith('discriminator')]
    g_vars = [var for var in t_vars if var.name.startswith('generator')]

    # Optimize
    with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)):
        d_train_opt = tf.train.AdamOptimizer(learning_rate, beta1=beta1).minimize(d_loss, var_list=d_vars)
        g_train_opt = tf.train.AdamOptimizer(learning_rate, beta1=beta1).minimize(g_loss, var_list=g_vars)
    return d_train_opt, g_train_opt


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_model_opt(model_opt, tf)


Tests Passed

Neural Network Training

Show Output

Use this function to show the current output of the generator during training. It will help you determine how well the GANs is training.


In [62]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
import numpy as np

def show_generator_output(sess, n_images, input_z, out_channel_dim, image_mode):
    """
    Show example output for the generator
    :param sess: TensorFlow session
    :param n_images: Number of Images to display
    :param input_z: Input Z Tensor
    :param out_channel_dim: The number of channels in the output image
    :param image_mode: The mode to use for images ("RGB" or "L")
    """
    cmap = None if image_mode == 'RGB' else 'gray'
    z_dim = input_z.get_shape().as_list()[-1]
    example_z = np.random.uniform(-1, 1, size=[n_images, z_dim])

    samples = sess.run(
        generator(input_z, out_channel_dim, False),
        feed_dict={input_z: example_z})

    images_grid = helper.images_square_grid(samples, image_mode)
    pyplot.imshow(images_grid, cmap=cmap)
    pyplot.show()

Train

Implement train to build and train the GANs. Use the following functions you implemented:

  • model_inputs(image_width, image_height, image_channels, z_dim)
  • model_loss(input_real, input_z, out_channel_dim)
  • model_opt(d_loss, g_loss, learning_rate, beta1)

Use the show_generator_output to show generator output while you train. Running show_generator_output for every batch will drastically increase training time and increase the size of the notebook. It's recommended to print the generator output every 100 batches.


In [67]:
import math
import time
def train(epoch_count, batch_size, z_dim, learning_rate, beta1, get_batches, data_shape, data_image_mode):
    """
    Train the GAN
    :param epoch_count: Number of epochs
    :param batch_size: Batch Size
    :param z_dim: Z dimension
    :param learning_rate: Learning Rate
    :param beta1: The exponential decay rate for the 1st moment in the optimizer
    :param get_batches: Function to get batches
    :param data_shape: Shape of the data
    :param data_image_mode: The image mode to use for images ("RGB" or "L")
    """
    # TODO: Build Model
    step_count = 0
    
    input_real, input_z,l_rate = model_inputs(data_shape[2],data_shape[1],data_shape[3], z_dim)
    d_loss,g_loss = model_loss(input_real, input_z, data_shape[3])
    d_opt,g_opt = model_opt(d_loss, g_loss, learning_rate, beta1)
    print_info_batch_cnt = 20
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        lastBatchesTime = time.time()
        for epoch_i in range(epoch_count):
            batch_cnt = 0
            for batch_images in get_batches(batch_size):
                batch_images = batch_images*2
                step_count += 1
                batch_cnt += 1
                batch_z = np.random.uniform(-1, 1, size=(batch_size, z_dim))
                # TODO: Train Model
                
                _ = sess.run(d_opt, feed_dict={input_real: batch_images, input_z: batch_z,l_rate:learning_rate })
                _ = sess.run(g_opt, feed_dict={input_z: batch_z, input_real: batch_images,l_rate:learning_rate })
                # Run g_optim twice to make sure that d_loss does not go to zero
                _ = sess.run(g_opt, feed_dict={input_z: batch_z, input_real: batch_images,l_rate:learning_rate })
                
                if step_count % print_info_batch_cnt == 0:
                    # At the end of each epoch, get the losses and print them out
                    train_loss_d = d_loss.eval({input_z: batch_z, input_real: batch_images})
                    train_loss_g = g_loss.eval({input_z: batch_z})

                    print("Epoch {}/{}...".format(epoch_i+1, epoch_count),
                          "Batch {}/{}...".format(batch_cnt,math.ceil(data_shape[0]/batch_images.shape[0])),
                          "Discriminator Loss: {:.4f}...".format(train_loss_d),
                          "Generator Loss: {:.4f}".format(train_loss_g),\
                          "This {} batches takes:{:.1f} sec".format(print_info_batch_cnt,(time.time()-lastBatchesTime)))
                    lastBatchesTime = time.time()
                    
                if step_count % 400 == 0:
                    show_generator_output(sess,25,input_z,data_shape[3],data_image_mode)
        show_generator_output(sess,25,input_z,data_shape[3],data_image_mode)

MNIST

Test your GANs architecture on MNIST. After 2 epochs, the GANs should be able to generate images that look like handwritten digits. Make sure the loss of the generator is lower than the loss of the discriminator or close to 0.


In [68]:
batch_size = 64
z_dim = 128
learning_rate = 0.0002
beta1 = 0.5


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
epochs = 4

mnist_dataset = helper.Dataset('mnist', glob(os.path.join(data_dir, 'mnist/*.jpg')))
with tf.Graph().as_default():
    train(epochs, batch_size, z_dim, learning_rate, beta1, mnist_dataset.get_batches,
          mnist_dataset.shape, mnist_dataset.image_mode)


Epoch 1/4... Batch 20/938... Discriminator Loss: 2.4262... Generator Loss: 0.3522 This 20 batches takes:35.4 sec
Epoch 1/4... Batch 40/938... Discriminator Loss: 2.2550... Generator Loss: 0.3585 This 20 batches takes:34.4 sec
Epoch 1/4... Batch 60/938... Discriminator Loss: 1.5567... Generator Loss: 0.7122 This 20 batches takes:34.4 sec
Epoch 1/4... Batch 80/938... Discriminator Loss: 0.9235... Generator Loss: 1.3386 This 20 batches takes:34.6 sec
Epoch 1/4... Batch 100/938... Discriminator Loss: 2.3996... Generator Loss: 0.4445 This 20 batches takes:34.4 sec
Epoch 1/4... Batch 120/938... Discriminator Loss: 1.1796... Generator Loss: 1.1474 This 20 batches takes:34.5 sec
Epoch 1/4... Batch 140/938... Discriminator Loss: 1.4666... Generator Loss: 0.8723 This 20 batches takes:34.5 sec
Epoch 1/4... Batch 160/938... Discriminator Loss: 1.8409... Generator Loss: 0.7175 This 20 batches takes:34.4 sec
Epoch 1/4... Batch 180/938... Discriminator Loss: 1.4552... Generator Loss: 0.6309 This 20 batches takes:34.3 sec
Epoch 1/4... Batch 200/938... Discriminator Loss: 1.4406... Generator Loss: 0.9303 This 20 batches takes:34.4 sec
Epoch 1/4... Batch 220/938... Discriminator Loss: 1.2166... Generator Loss: 1.0941 This 20 batches takes:34.3 sec
Epoch 1/4... Batch 240/938... Discriminator Loss: 1.3918... Generator Loss: 0.7152 This 20 batches takes:34.5 sec
Epoch 1/4... Batch 260/938... Discriminator Loss: 1.6360... Generator Loss: 0.7331 This 20 batches takes:34.4 sec
Epoch 1/4... Batch 280/938... Discriminator Loss: 1.4369... Generator Loss: 0.7950 This 20 batches takes:34.5 sec
Epoch 1/4... Batch 300/938... Discriminator Loss: 1.5921... Generator Loss: 0.6594 This 20 batches takes:34.4 sec
Epoch 1/4... Batch 320/938... Discriminator Loss: 1.5174... Generator Loss: 0.8746 This 20 batches takes:34.3 sec
Epoch 1/4... Batch 340/938... Discriminator Loss: 1.2357... Generator Loss: 0.7969 This 20 batches takes:34.5 sec
Epoch 1/4... Batch 360/938... Discriminator Loss: 1.3864... Generator Loss: 0.7255 This 20 batches takes:34.4 sec
Epoch 1/4... Batch 380/938... Discriminator Loss: 1.5017... Generator Loss: 0.9859 This 20 batches takes:34.4 sec
Epoch 1/4... Batch 400/938... Discriminator Loss: 1.7404... Generator Loss: 0.4059 This 20 batches takes:34.4 sec
Epoch 1/4... Batch 420/938... Discriminator Loss: 1.4296... Generator Loss: 0.5941 This 20 batches takes:35.8 sec
Epoch 1/4... Batch 440/938... Discriminator Loss: 1.5868... Generator Loss: 0.8023 This 20 batches takes:34.5 sec
Epoch 1/4... Batch 460/938... Discriminator Loss: 1.4145... Generator Loss: 0.8255 This 20 batches takes:34.4 sec
Epoch 1/4... Batch 480/938... Discriminator Loss: 1.5758... Generator Loss: 0.9511 This 20 batches takes:34.4 sec
Epoch 1/4... Batch 500/938... Discriminator Loss: 1.5093... Generator Loss: 0.6328 This 20 batches takes:34.5 sec
Epoch 1/4... Batch 520/938... Discriminator Loss: 1.4074... Generator Loss: 0.9241 This 20 batches takes:34.4 sec
Epoch 1/4... Batch 540/938... Discriminator Loss: 1.4097... Generator Loss: 0.8406 This 20 batches takes:34.5 sec
Epoch 1/4... Batch 560/938... Discriminator Loss: 1.4582... Generator Loss: 1.2069 This 20 batches takes:34.5 sec
Epoch 1/4... Batch 580/938... Discriminator Loss: 1.4878... Generator Loss: 0.7665 This 20 batches takes:34.6 sec
Epoch 1/4... Batch 600/938... Discriminator Loss: 1.3866... Generator Loss: 0.6965 This 20 batches takes:34.3 sec
Epoch 1/4... Batch 620/938... Discriminator Loss: 1.3531... Generator Loss: 0.6430 This 20 batches takes:34.5 sec
Epoch 1/4... Batch 640/938... Discriminator Loss: 1.3616... Generator Loss: 0.8873 This 20 batches takes:34.3 sec
Epoch 1/4... Batch 660/938... Discriminator Loss: 1.4671... Generator Loss: 0.4879 This 20 batches takes:34.4 sec
Epoch 1/4... Batch 680/938... Discriminator Loss: 1.7153... Generator Loss: 0.7879 This 20 batches takes:34.4 sec
Epoch 1/4... Batch 700/938... Discriminator Loss: 1.7179... Generator Loss: 0.5515 This 20 batches takes:34.4 sec
Epoch 1/4... Batch 720/938... Discriminator Loss: 1.6050... Generator Loss: 0.8387 This 20 batches takes:34.4 sec
Epoch 1/4... Batch 740/938... Discriminator Loss: 1.6054... Generator Loss: 0.5919 This 20 batches takes:34.4 sec
Epoch 1/4... Batch 760/938... Discriminator Loss: 1.6887... Generator Loss: 1.0153 This 20 batches takes:34.6 sec
Epoch 1/4... Batch 780/938... Discriminator Loss: 1.4030... Generator Loss: 1.0493 This 20 batches takes:34.5 sec
Epoch 1/4... Batch 800/938... Discriminator Loss: 1.2996... Generator Loss: 0.8785 This 20 batches takes:34.4 sec
Epoch 1/4... Batch 820/938... Discriminator Loss: 1.2953... Generator Loss: 0.8709 This 20 batches takes:35.5 sec
Epoch 1/4... Batch 840/938... Discriminator Loss: 1.4485... Generator Loss: 0.5840 This 20 batches takes:34.4 sec
Epoch 1/4... Batch 860/938... Discriminator Loss: 1.3656... Generator Loss: 0.8823 This 20 batches takes:34.6 sec
Epoch 1/4... Batch 880/938... Discriminator Loss: 1.2064... Generator Loss: 0.7596 This 20 batches takes:34.5 sec
Epoch 1/4... Batch 900/938... Discriminator Loss: 1.2377... Generator Loss: 0.6867 This 20 batches takes:34.3 sec
Epoch 1/4... Batch 920/938... Discriminator Loss: 1.4792... Generator Loss: 0.7040 This 20 batches takes:34.4 sec
Epoch 2/4... Batch 3/938... Discriminator Loss: 1.4143... Generator Loss: 0.5310 This 20 batches takes:34.3 sec
Epoch 2/4... Batch 23/938... Discriminator Loss: 1.3746... Generator Loss: 0.8075 This 20 batches takes:34.3 sec
Epoch 2/4... Batch 43/938... Discriminator Loss: 1.4033... Generator Loss: 0.9311 This 20 batches takes:34.3 sec
Epoch 2/4... Batch 63/938... Discriminator Loss: 1.5095... Generator Loss: 0.5264 This 20 batches takes:34.3 sec
Epoch 2/4... Batch 83/938... Discriminator Loss: 1.4396... Generator Loss: 1.2732 This 20 batches takes:34.3 sec
Epoch 2/4... Batch 103/938... Discriminator Loss: 1.5695... Generator Loss: 1.1293 This 20 batches takes:34.3 sec
Epoch 2/4... Batch 123/938... Discriminator Loss: 1.4599... Generator Loss: 0.7390 This 20 batches takes:34.3 sec
Epoch 2/4... Batch 143/938... Discriminator Loss: 1.4504... Generator Loss: 0.6584 This 20 batches takes:34.3 sec
Epoch 2/4... Batch 163/938... Discriminator Loss: 1.6007... Generator Loss: 0.5542 This 20 batches takes:34.3 sec
Epoch 2/4... Batch 183/938... Discriminator Loss: 1.2803... Generator Loss: 0.8255 This 20 batches takes:34.3 sec
Epoch 2/4... Batch 203/938... Discriminator Loss: 1.5876... Generator Loss: 0.7597 This 20 batches takes:34.4 sec
Epoch 2/4... Batch 223/938... Discriminator Loss: 1.4901... Generator Loss: 0.9650 This 20 batches takes:34.3 sec
Epoch 2/4... Batch 243/938... Discriminator Loss: 1.7989... Generator Loss: 0.4084 This 20 batches takes:34.8 sec
Epoch 2/4... Batch 263/938... Discriminator Loss: 1.3640... Generator Loss: 0.6809 This 20 batches takes:34.3 sec
Epoch 2/4... Batch 283/938... Discriminator Loss: 1.4660... Generator Loss: 0.6643 This 20 batches takes:35.3 sec
Epoch 2/4... Batch 303/938... Discriminator Loss: 1.4360... Generator Loss: 0.8979 This 20 batches takes:34.6 sec
Epoch 2/4... Batch 323/938... Discriminator Loss: 1.2956... Generator Loss: 1.0710 This 20 batches takes:34.4 sec
Epoch 2/4... Batch 343/938... Discriminator Loss: 1.5790... Generator Loss: 0.6586 This 20 batches takes:34.4 sec
Epoch 2/4... Batch 363/938... Discriminator Loss: 1.3987... Generator Loss: 0.9007 This 20 batches takes:34.3 sec
Epoch 2/4... Batch 383/938... Discriminator Loss: 1.7748... Generator Loss: 0.8080 This 20 batches takes:34.3 sec
Epoch 2/4... Batch 403/938... Discriminator Loss: 1.5174... Generator Loss: 0.7280 This 20 batches takes:34.3 sec
Epoch 2/4... Batch 423/938... Discriminator Loss: 1.2228... Generator Loss: 1.0968 This 20 batches takes:34.3 sec
Epoch 2/4... Batch 443/938... Discriminator Loss: 1.1888... Generator Loss: 1.0525 This 20 batches takes:34.3 sec
Epoch 2/4... Batch 463/938... Discriminator Loss: 1.3577... Generator Loss: 0.8820 This 20 batches takes:34.5 sec
Epoch 2/4... Batch 483/938... Discriminator Loss: 1.4523... Generator Loss: 0.8292 This 20 batches takes:34.5 sec
Epoch 2/4... Batch 503/938... Discriminator Loss: 1.1847... Generator Loss: 0.7541 This 20 batches takes:34.5 sec
Epoch 2/4... Batch 523/938... Discriminator Loss: 1.2530... Generator Loss: 0.9098 This 20 batches takes:34.9 sec
Epoch 2/4... Batch 543/938... Discriminator Loss: 1.6028... Generator Loss: 0.5438 This 20 batches takes:34.5 sec
Epoch 2/4... Batch 563/938... Discriminator Loss: 1.2663... Generator Loss: 1.0998 This 20 batches takes:34.4 sec
Epoch 2/4... Batch 583/938... Discriminator Loss: 1.4578... Generator Loss: 0.5373 This 20 batches takes:34.4 sec
Epoch 2/4... Batch 603/938... Discriminator Loss: 1.2683... Generator Loss: 1.3047 This 20 batches takes:34.3 sec
Epoch 2/4... Batch 623/938... Discriminator Loss: 1.2646... Generator Loss: 0.8491 This 20 batches takes:34.5 sec
Epoch 2/4... Batch 643/938... Discriminator Loss: 1.6026... Generator Loss: 1.0556 This 20 batches takes:34.4 sec
Epoch 2/4... Batch 663/938... Discriminator Loss: 1.1143... Generator Loss: 0.9149 This 20 batches takes:37.9 sec
Epoch 2/4... Batch 683/938... Discriminator Loss: 1.5259... Generator Loss: 0.4630 This 20 batches takes:42.7 sec
Epoch 2/4... Batch 703/938... Discriminator Loss: 1.3392... Generator Loss: 1.2022 This 20 batches takes:42.2 sec
Epoch 2/4... Batch 723/938... Discriminator Loss: 1.3044... Generator Loss: 1.0882 This 20 batches takes:41.5 sec
Epoch 2/4... Batch 743/938... Discriminator Loss: 1.1291... Generator Loss: 1.0693 This 20 batches takes:40.9 sec
Epoch 2/4... Batch 763/938... Discriminator Loss: 1.5771... Generator Loss: 0.5151 This 20 batches takes:40.9 sec
Epoch 2/4... Batch 783/938... Discriminator Loss: 1.2047... Generator Loss: 0.9277 This 20 batches takes:42.5 sec
Epoch 2/4... Batch 803/938... Discriminator Loss: 1.5666... Generator Loss: 0.4155 This 20 batches takes:40.3 sec
Epoch 2/4... Batch 823/938... Discriminator Loss: 1.2879... Generator Loss: 1.0463 This 20 batches takes:40.5 sec
Epoch 2/4... Batch 843/938... Discriminator Loss: 1.4741... Generator Loss: 0.4721 This 20 batches takes:40.1 sec
Epoch 2/4... Batch 863/938... Discriminator Loss: 1.4377... Generator Loss: 0.7388 This 20 batches takes:40.4 sec
Epoch 2/4... Batch 883/938... Discriminator Loss: 1.3619... Generator Loss: 0.7331 This 20 batches takes:39.8 sec
Epoch 2/4... Batch 903/938... Discriminator Loss: 1.4275... Generator Loss: 0.9292 This 20 batches takes:39.7 sec
Epoch 2/4... Batch 923/938... Discriminator Loss: 1.4014... Generator Loss: 0.8214 This 20 batches takes:39.9 sec
Epoch 3/4... Batch 6/938... Discriminator Loss: 1.7473... Generator Loss: 1.7809 This 20 batches takes:39.6 sec
Epoch 3/4... Batch 26/938... Discriminator Loss: 1.5777... Generator Loss: 0.6421 This 20 batches takes:40.3 sec
Epoch 3/4... Batch 46/938... Discriminator Loss: 1.1401... Generator Loss: 0.8990 This 20 batches takes:39.9 sec
Epoch 3/4... Batch 66/938... Discriminator Loss: 1.3492... Generator Loss: 0.8525 This 20 batches takes:39.6 sec
Epoch 3/4... Batch 86/938... Discriminator Loss: 1.4483... Generator Loss: 0.5302 This 20 batches takes:39.9 sec
Epoch 3/4... Batch 106/938... Discriminator Loss: 1.4758... Generator Loss: 0.7665 This 20 batches takes:40.2 sec
Epoch 3/4... Batch 126/938... Discriminator Loss: 1.4457... Generator Loss: 0.6335 This 20 batches takes:39.8 sec
Epoch 3/4... Batch 146/938... Discriminator Loss: 1.3092... Generator Loss: 0.7478 This 20 batches takes:41.5 sec
Epoch 3/4... Batch 166/938... Discriminator Loss: 1.1594... Generator Loss: 0.7221 This 20 batches takes:39.7 sec
Epoch 3/4... Batch 186/938... Discriminator Loss: 1.2652... Generator Loss: 1.6738 This 20 batches takes:40.0 sec
Epoch 3/4... Batch 206/938... Discriminator Loss: 1.4903... Generator Loss: 0.7889 This 20 batches takes:39.7 sec
Epoch 3/4... Batch 226/938... Discriminator Loss: 0.9409... Generator Loss: 1.1377 This 20 batches takes:39.6 sec
Epoch 3/4... Batch 246/938... Discriminator Loss: 1.4490... Generator Loss: 0.7764 This 20 batches takes:39.7 sec
Epoch 3/4... Batch 266/938... Discriminator Loss: 1.2762... Generator Loss: 0.7158 This 20 batches takes:40.5 sec
Epoch 3/4... Batch 286/938... Discriminator Loss: 1.3291... Generator Loss: 1.5406 This 20 batches takes:40.2 sec
Epoch 3/4... Batch 306/938... Discriminator Loss: 1.3162... Generator Loss: 0.5470 This 20 batches takes:40.7 sec
Epoch 3/4... Batch 326/938... Discriminator Loss: 1.2462... Generator Loss: 0.4741 This 20 batches takes:39.5 sec
Epoch 3/4... Batch 346/938... Discriminator Loss: 1.4435... Generator Loss: 0.5831 This 20 batches takes:40.3 sec
Epoch 3/4... Batch 366/938... Discriminator Loss: 1.2080... Generator Loss: 0.8131 This 20 batches takes:39.6 sec
Epoch 3/4... Batch 386/938... Discriminator Loss: 1.1783... Generator Loss: 0.7724 This 20 batches takes:39.9 sec
Epoch 3/4... Batch 406/938... Discriminator Loss: 1.2818... Generator Loss: 0.6578 This 20 batches takes:40.0 sec
Epoch 3/4... Batch 426/938... Discriminator Loss: 1.0468... Generator Loss: 0.7627 This 20 batches takes:39.7 sec
Epoch 3/4... Batch 446/938... Discriminator Loss: 1.1350... Generator Loss: 1.0351 This 20 batches takes:40.4 sec
Epoch 3/4... Batch 466/938... Discriminator Loss: 1.0945... Generator Loss: 0.9663 This 20 batches takes:39.4 sec
Epoch 3/4... Batch 486/938... Discriminator Loss: 1.1947... Generator Loss: 1.4043 This 20 batches takes:40.1 sec
Epoch 3/4... Batch 506/938... Discriminator Loss: 1.1785... Generator Loss: 0.6796 This 20 batches takes:39.7 sec
Epoch 3/4... Batch 526/938... Discriminator Loss: 1.3143... Generator Loss: 0.6317 This 20 batches takes:39.5 sec
Epoch 3/4... Batch 546/938... Discriminator Loss: 1.1875... Generator Loss: 0.9247 This 20 batches takes:40.3 sec
Epoch 3/4... Batch 566/938... Discriminator Loss: 1.2887... Generator Loss: 0.6441 This 20 batches takes:39.7 sec
Epoch 3/4... Batch 586/938... Discriminator Loss: 1.4540... Generator Loss: 0.8824 This 20 batches takes:39.0 sec
Epoch 3/4... Batch 606/938... Discriminator Loss: 1.0848... Generator Loss: 0.9128 This 20 batches takes:39.3 sec
Epoch 3/4... Batch 626/938... Discriminator Loss: 1.6991... Generator Loss: 0.5873 This 20 batches takes:39.5 sec
Epoch 3/4... Batch 646/938... Discriminator Loss: 1.3846... Generator Loss: 0.5244 This 20 batches takes:39.9 sec
Epoch 3/4... Batch 666/938... Discriminator Loss: 1.0461... Generator Loss: 0.5810 This 20 batches takes:36.5 sec
Epoch 3/4... Batch 686/938... Discriminator Loss: 1.8529... Generator Loss: 0.3478 This 20 batches takes:34.4 sec
Epoch 3/4... Batch 706/938... Discriminator Loss: 1.0132... Generator Loss: 1.4496 This 20 batches takes:34.5 sec
Epoch 3/4... Batch 726/938... Discriminator Loss: 1.0964... Generator Loss: 1.1446 This 20 batches takes:34.4 sec
Epoch 3/4... Batch 746/938... Discriminator Loss: 1.1764... Generator Loss: 0.9197 This 20 batches takes:34.3 sec
Epoch 3/4... Batch 766/938... Discriminator Loss: 0.9964... Generator Loss: 0.9060 This 20 batches takes:34.5 sec
Epoch 3/4... Batch 786/938... Discriminator Loss: 1.0485... Generator Loss: 0.6722 This 20 batches takes:34.4 sec
Epoch 3/4... Batch 806/938... Discriminator Loss: 1.1409... Generator Loss: 0.5175 This 20 batches takes:34.6 sec
Epoch 3/4... Batch 826/938... Discriminator Loss: 1.4091... Generator Loss: 0.7816 This 20 batches takes:34.5 sec
Epoch 3/4... Batch 846/938... Discriminator Loss: 1.3748... Generator Loss: 1.4645 This 20 batches takes:34.5 sec
Epoch 3/4... Batch 866/938... Discriminator Loss: 1.3047... Generator Loss: 1.0001 This 20 batches takes:34.4 sec
Epoch 3/4... Batch 886/938... Discriminator Loss: 1.2215... Generator Loss: 0.9070 This 20 batches takes:34.4 sec
Epoch 3/4... Batch 906/938... Discriminator Loss: 1.1144... Generator Loss: 1.1888 This 20 batches takes:34.4 sec
Epoch 3/4... Batch 926/938... Discriminator Loss: 1.0622... Generator Loss: 0.7270 This 20 batches takes:34.3 sec
Epoch 4/4... Batch 9/938... Discriminator Loss: 1.8372... Generator Loss: 2.1633 This 20 batches takes:35.4 sec
Epoch 4/4... Batch 29/938... Discriminator Loss: 1.2516... Generator Loss: 1.5847 This 20 batches takes:34.3 sec
Epoch 4/4... Batch 49/938... Discriminator Loss: 1.3519... Generator Loss: 0.9401 This 20 batches takes:34.4 sec
Epoch 4/4... Batch 69/938... Discriminator Loss: 1.0060... Generator Loss: 0.9919 This 20 batches takes:34.3 sec
Epoch 4/4... Batch 89/938... Discriminator Loss: 1.3560... Generator Loss: 0.5503 This 20 batches takes:34.3 sec
Epoch 4/4... Batch 109/938... Discriminator Loss: 0.8760... Generator Loss: 1.0165 This 20 batches takes:34.5 sec
Epoch 4/4... Batch 129/938... Discriminator Loss: 1.8466... Generator Loss: 0.2715 This 20 batches takes:34.4 sec
Epoch 4/4... Batch 149/938... Discriminator Loss: 1.2114... Generator Loss: 0.9544 This 20 batches takes:34.5 sec
Epoch 4/4... Batch 169/938... Discriminator Loss: 1.0927... Generator Loss: 0.7198 This 20 batches takes:34.5 sec
Epoch 4/4... Batch 189/938... Discriminator Loss: 1.1554... Generator Loss: 0.7570 This 20 batches takes:34.3 sec
Epoch 4/4... Batch 209/938... Discriminator Loss: 1.0672... Generator Loss: 0.9410 This 20 batches takes:34.3 sec
Epoch 4/4... Batch 229/938... Discriminator Loss: 1.0256... Generator Loss: 1.2789 This 20 batches takes:34.4 sec
Epoch 4/4... Batch 249/938... Discriminator Loss: 0.9885... Generator Loss: 1.0222 This 20 batches takes:34.3 sec
Epoch 4/4... Batch 269/938... Discriminator Loss: 1.0428... Generator Loss: 1.1094 This 20 batches takes:34.3 sec
Epoch 4/4... Batch 289/938... Discriminator Loss: 1.7234... Generator Loss: 2.4156 This 20 batches takes:34.4 sec
Epoch 4/4... Batch 309/938... Discriminator Loss: 0.9947... Generator Loss: 1.4424 This 20 batches takes:34.4 sec
Epoch 4/4... Batch 329/938... Discriminator Loss: 1.0704... Generator Loss: 1.0670 This 20 batches takes:34.5 sec
Epoch 4/4... Batch 349/938... Discriminator Loss: 1.6069... Generator Loss: 0.3950 This 20 batches takes:34.6 sec
Epoch 4/4... Batch 369/938... Discriminator Loss: 0.8416... Generator Loss: 1.2056 This 20 batches takes:34.4 sec
Epoch 4/4... Batch 389/938... Discriminator Loss: 1.3075... Generator Loss: 1.1615 This 20 batches takes:34.4 sec
Epoch 4/4... Batch 409/938... Discriminator Loss: 1.8858... Generator Loss: 0.3193 This 20 batches takes:35.4 sec
Epoch 4/4... Batch 429/938... Discriminator Loss: 1.6498... Generator Loss: 2.6058 This 20 batches takes:34.5 sec
Epoch 4/4... Batch 449/938... Discriminator Loss: 0.8648... Generator Loss: 0.9636 This 20 batches takes:34.5 sec
Epoch 4/4... Batch 469/938... Discriminator Loss: 1.2298... Generator Loss: 1.8195 This 20 batches takes:34.7 sec
Epoch 4/4... Batch 489/938... Discriminator Loss: 0.9254... Generator Loss: 1.3035 This 20 batches takes:34.9 sec
Epoch 4/4... Batch 509/938... Discriminator Loss: 2.0124... Generator Loss: 0.3879 This 20 batches takes:34.9 sec
Epoch 4/4... Batch 529/938... Discriminator Loss: 0.9138... Generator Loss: 1.8884 This 20 batches takes:34.9 sec
Epoch 4/4... Batch 549/938... Discriminator Loss: 1.1904... Generator Loss: 0.5734 This 20 batches takes:34.9 sec
Epoch 4/4... Batch 569/938... Discriminator Loss: 1.1104... Generator Loss: 1.8237 This 20 batches takes:35.3 sec
Epoch 4/4... Batch 589/938... Discriminator Loss: 0.9760... Generator Loss: 1.0586 This 20 batches takes:35.1 sec
Epoch 4/4... Batch 609/938... Discriminator Loss: 1.0610... Generator Loss: 1.4059 This 20 batches takes:34.9 sec
Epoch 4/4... Batch 629/938... Discriminator Loss: 0.9956... Generator Loss: 1.0986 This 20 batches takes:34.8 sec
Epoch 4/4... Batch 649/938... Discriminator Loss: 1.1678... Generator Loss: 0.5525 This 20 batches takes:34.8 sec
Epoch 4/4... Batch 669/938... Discriminator Loss: 1.0295... Generator Loss: 0.5749 This 20 batches takes:34.7 sec
Epoch 4/4... Batch 689/938... Discriminator Loss: 1.5507... Generator Loss: 0.5481 This 20 batches takes:34.8 sec
Epoch 4/4... Batch 709/938... Discriminator Loss: 1.1727... Generator Loss: 1.2914 This 20 batches takes:34.7 sec
Epoch 4/4... Batch 729/938... Discriminator Loss: 0.7762... Generator Loss: 1.6313 This 20 batches takes:34.7 sec
Epoch 4/4... Batch 749/938... Discriminator Loss: 0.8945... Generator Loss: 0.9134 This 20 batches takes:34.7 sec
Epoch 4/4... Batch 769/938... Discriminator Loss: 1.3289... Generator Loss: 0.5710 This 20 batches takes:34.9 sec
Epoch 4/4... Batch 789/938... Discriminator Loss: 0.9951... Generator Loss: 0.9915 This 20 batches takes:34.7 sec
Epoch 4/4... Batch 809/938... Discriminator Loss: 0.8854... Generator Loss: 0.7025 This 20 batches takes:35.5 sec
Epoch 4/4... Batch 829/938... Discriminator Loss: 1.3127... Generator Loss: 0.7663 This 20 batches takes:34.3 sec
Epoch 4/4... Batch 849/938... Discriminator Loss: 1.2546... Generator Loss: 2.0215 This 20 batches takes:34.3 sec
Epoch 4/4... Batch 869/938... Discriminator Loss: 0.7182... Generator Loss: 1.0514 This 20 batches takes:34.4 sec
Epoch 4/4... Batch 889/938... Discriminator Loss: 1.0994... Generator Loss: 0.9701 This 20 batches takes:34.3 sec
Epoch 4/4... Batch 909/938... Discriminator Loss: 0.7305... Generator Loss: 1.5260 This 20 batches takes:34.4 sec
Epoch 4/4... Batch 929/938... Discriminator Loss: 0.9694... Generator Loss: 1.9400 This 20 batches takes:34.3 sec

CelebA

Run your GANs on CelebA. It will take around 20 minutes on the average GPU to run one epoch. You can run the whole epoch or stop when it starts to generate realistic faces.


In [69]:
batch_size = 32
z_dim = 128
learning_rate = 0.0002
beta1 = 0.5


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
epochs = 2

celeba_dataset = helper.Dataset('celeba', glob(os.path.join(data_dir, 'img_align_celeba/*.jpg')))
with tf.Graph().as_default():
    train(epochs, batch_size, z_dim, learning_rate, beta1, celeba_dataset.get_batches,
          celeba_dataset.shape, celeba_dataset.image_mode)


Epoch 1/2... Batch 20/6332... Discriminator Loss: 3.0951... Generator Loss: 0.1176 This 20 batches takes:29.3 sec
Epoch 1/2... Batch 40/6332... Discriminator Loss: 4.1144... Generator Loss: 0.0307 This 20 batches takes:29.1 sec
Epoch 1/2... Batch 60/6332... Discriminator Loss: 0.7006... Generator Loss: 1.6453 This 20 batches takes:28.4 sec
Epoch 1/2... Batch 80/6332... Discriminator Loss: 0.6766... Generator Loss: 2.3554 This 20 batches takes:34.9 sec
Epoch 1/2... Batch 100/6332... Discriminator Loss: 0.4739... Generator Loss: 3.0555 This 20 batches takes:31.2 sec
Epoch 1/2... Batch 120/6332... Discriminator Loss: 0.9821... Generator Loss: 1.5928 This 20 batches takes:29.9 sec
Epoch 1/2... Batch 140/6332... Discriminator Loss: 1.7721... Generator Loss: 1.8161 This 20 batches takes:28.2 sec
Epoch 1/2... Batch 160/6332... Discriminator Loss: 1.2157... Generator Loss: 0.8090 This 20 batches takes:27.3 sec
Epoch 1/2... Batch 180/6332... Discriminator Loss: 1.2124... Generator Loss: 3.0850 This 20 batches takes:27.0 sec
Epoch 1/2... Batch 200/6332... Discriminator Loss: 0.4880... Generator Loss: 2.4257 This 20 batches takes:28.3 sec
Epoch 1/2... Batch 220/6332... Discriminator Loss: 1.1841... Generator Loss: 3.2974 This 20 batches takes:27.2 sec
Epoch 1/2... Batch 240/6332... Discriminator Loss: 0.5866... Generator Loss: 1.7307 This 20 batches takes:27.2 sec
Epoch 1/2... Batch 260/6332... Discriminator Loss: 1.0643... Generator Loss: 0.9846 This 20 batches takes:27.3 sec
Epoch 1/2... Batch 280/6332... Discriminator Loss: 1.0983... Generator Loss: 0.8516 This 20 batches takes:26.6 sec
Epoch 1/2... Batch 300/6332... Discriminator Loss: 2.9974... Generator Loss: 5.2253 This 20 batches takes:27.0 sec
Epoch 1/2... Batch 320/6332... Discriminator Loss: 2.7910... Generator Loss: 5.2978 This 20 batches takes:27.0 sec
Epoch 1/2... Batch 340/6332... Discriminator Loss: 1.0368... Generator Loss: 0.9479 This 20 batches takes:26.2 sec
Epoch 1/2... Batch 360/6332... Discriminator Loss: 0.8835... Generator Loss: 1.3386 This 20 batches takes:26.4 sec
Epoch 1/2... Batch 380/6332... Discriminator Loss: 0.8402... Generator Loss: 1.1299 This 20 batches takes:27.1 sec
Epoch 1/2... Batch 400/6332... Discriminator Loss: 1.0267... Generator Loss: 1.1346 This 20 batches takes:26.9 sec
Epoch 1/2... Batch 420/6332... Discriminator Loss: 0.9297... Generator Loss: 0.7310 This 20 batches takes:27.9 sec
Epoch 1/2... Batch 440/6332... Discriminator Loss: 3.3605... Generator Loss: 4.6826 This 20 batches takes:27.1 sec
Epoch 1/2... Batch 460/6332... Discriminator Loss: 1.3443... Generator Loss: 0.6800 This 20 batches takes:27.7 sec
Epoch 1/2... Batch 480/6332... Discriminator Loss: 0.9817... Generator Loss: 2.4792 This 20 batches takes:26.5 sec
Epoch 1/2... Batch 500/6332... Discriminator Loss: 1.7899... Generator Loss: 0.4939 This 20 batches takes:26.6 sec
Epoch 1/2... Batch 520/6332... Discriminator Loss: 0.8890... Generator Loss: 1.0140 This 20 batches takes:27.4 sec
Epoch 1/2... Batch 540/6332... Discriminator Loss: 1.1233... Generator Loss: 1.4112 This 20 batches takes:27.1 sec
Epoch 1/2... Batch 560/6332... Discriminator Loss: 1.4181... Generator Loss: 1.0016 This 20 batches takes:26.6 sec
Epoch 1/2... Batch 580/6332... Discriminator Loss: 0.8092... Generator Loss: 1.3121 This 20 batches takes:26.8 sec
Epoch 1/2... Batch 600/6332... Discriminator Loss: 1.5912... Generator Loss: 1.2241 This 20 batches takes:26.7 sec
Epoch 1/2... Batch 620/6332... Discriminator Loss: 1.4548... Generator Loss: 0.7328 This 20 batches takes:28.0 sec
Epoch 1/2... Batch 640/6332... Discriminator Loss: 1.2315... Generator Loss: 1.6614 This 20 batches takes:27.3 sec
Epoch 1/2... Batch 660/6332... Discriminator Loss: 1.3345... Generator Loss: 1.7283 This 20 batches takes:26.9 sec
Epoch 1/2... Batch 680/6332... Discriminator Loss: 2.2135... Generator Loss: 0.3328 This 20 batches takes:27.1 sec
Epoch 1/2... Batch 700/6332... Discriminator Loss: 1.0626... Generator Loss: 0.7501 This 20 batches takes:27.9 sec
Epoch 1/2... Batch 720/6332... Discriminator Loss: 1.4504... Generator Loss: 0.9883 This 20 batches takes:27.6 sec
Epoch 1/2... Batch 740/6332... Discriminator Loss: 1.8292... Generator Loss: 0.5782 This 20 batches takes:27.6 sec
Epoch 1/2... Batch 760/6332... Discriminator Loss: 1.5627... Generator Loss: 0.9993 This 20 batches takes:27.1 sec
Epoch 1/2... Batch 780/6332... Discriminator Loss: 1.1814... Generator Loss: 1.2198 This 20 batches takes:27.7 sec
Epoch 1/2... Batch 800/6332... Discriminator Loss: 1.5143... Generator Loss: 0.6685 This 20 batches takes:26.3 sec
Epoch 1/2... Batch 820/6332... Discriminator Loss: 1.1675... Generator Loss: 0.8665 This 20 batches takes:27.8 sec
Epoch 1/2... Batch 840/6332... Discriminator Loss: 1.3198... Generator Loss: 0.8991 This 20 batches takes:26.6 sec
Epoch 1/2... Batch 860/6332... Discriminator Loss: 1.6336... Generator Loss: 1.3275 This 20 batches takes:26.8 sec
Epoch 1/2... Batch 880/6332... Discriminator Loss: 1.5167... Generator Loss: 0.6431 This 20 batches takes:26.8 sec
Epoch 1/2... Batch 900/6332... Discriminator Loss: 1.5209... Generator Loss: 0.5923 This 20 batches takes:27.0 sec
Epoch 1/2... Batch 920/6332... Discriminator Loss: 0.9715... Generator Loss: 1.1291 This 20 batches takes:26.4 sec
Epoch 1/2... Batch 940/6332... Discriminator Loss: 1.1344... Generator Loss: 1.2591 This 20 batches takes:26.6 sec
Epoch 1/2... Batch 960/6332... Discriminator Loss: 1.6458... Generator Loss: 0.6469 This 20 batches takes:26.0 sec
Epoch 1/2... Batch 980/6332... Discriminator Loss: 1.3840... Generator Loss: 0.5590 This 20 batches takes:26.5 sec
Epoch 1/2... Batch 1000/6332... Discriminator Loss: 1.2551... Generator Loss: 0.8735 This 20 batches takes:26.5 sec
Epoch 1/2... Batch 1020/6332... Discriminator Loss: 1.6273... Generator Loss: 0.7883 This 20 batches takes:26.3 sec
Epoch 1/2... Batch 1040/6332... Discriminator Loss: 1.3805... Generator Loss: 0.9067 This 20 batches takes:27.2 sec
Epoch 1/2... Batch 1060/6332... Discriminator Loss: 1.3637... Generator Loss: 1.0271 This 20 batches takes:26.8 sec
Epoch 1/2... Batch 1080/6332... Discriminator Loss: 1.3899... Generator Loss: 0.7444 This 20 batches takes:26.5 sec
Epoch 1/2... Batch 1100/6332... Discriminator Loss: 1.6395... Generator Loss: 0.8065 This 20 batches takes:26.6 sec
Epoch 1/2... Batch 1120/6332... Discriminator Loss: 1.4723... Generator Loss: 0.8160 This 20 batches takes:27.3 sec
Epoch 1/2... Batch 1140/6332... Discriminator Loss: 1.4564... Generator Loss: 0.7957 This 20 batches takes:26.9 sec
Epoch 1/2... Batch 1160/6332... Discriminator Loss: 1.6158... Generator Loss: 0.7177 This 20 batches takes:26.8 sec
Epoch 1/2... Batch 1180/6332... Discriminator Loss: 1.6258... Generator Loss: 0.8230 This 20 batches takes:26.8 sec
Epoch 1/2... Batch 1200/6332... Discriminator Loss: 1.2425... Generator Loss: 0.6532 This 20 batches takes:26.9 sec
Epoch 1/2... Batch 1220/6332... Discriminator Loss: 1.4662... Generator Loss: 0.8184 This 20 batches takes:26.9 sec
Epoch 1/2... Batch 1240/6332... Discriminator Loss: 1.4981... Generator Loss: 0.7586 This 20 batches takes:25.9 sec
Epoch 1/2... Batch 1260/6332... Discriminator Loss: 1.4880... Generator Loss: 0.8241 This 20 batches takes:26.4 sec
Epoch 1/2... Batch 1280/6332... Discriminator Loss: 1.5089... Generator Loss: 0.7968 This 20 batches takes:26.5 sec
Epoch 1/2... Batch 1300/6332... Discriminator Loss: 1.7171... Generator Loss: 0.7830 This 20 batches takes:26.0 sec
Epoch 1/2... Batch 1320/6332... Discriminator Loss: 1.4092... Generator Loss: 0.5803 This 20 batches takes:25.9 sec
Epoch 1/2... Batch 1340/6332... Discriminator Loss: 1.3485... Generator Loss: 0.6112 This 20 batches takes:25.7 sec
Epoch 1/2... Batch 1360/6332... Discriminator Loss: 1.2041... Generator Loss: 0.8771 This 20 batches takes:25.7 sec
Epoch 1/2... Batch 1380/6332... Discriminator Loss: 1.3405... Generator Loss: 0.7946 This 20 batches takes:25.9 sec
Epoch 1/2... Batch 1400/6332... Discriminator Loss: 1.6931... Generator Loss: 0.6224 This 20 batches takes:29.5 sec
Epoch 1/2... Batch 1420/6332... Discriminator Loss: 1.4147... Generator Loss: 0.6138 This 20 batches takes:25.9 sec
Epoch 1/2... Batch 1440/6332... Discriminator Loss: 1.4407... Generator Loss: 0.8170 This 20 batches takes:26.0 sec
Epoch 1/2... Batch 1460/6332... Discriminator Loss: 1.4063... Generator Loss: 0.7634 This 20 batches takes:26.6 sec
Epoch 1/2... Batch 1480/6332... Discriminator Loss: 1.3764... Generator Loss: 0.9055 This 20 batches takes:25.9 sec
Epoch 1/2... Batch 1500/6332... Discriminator Loss: 1.8582... Generator Loss: 0.5346 This 20 batches takes:25.8 sec
Epoch 1/2... Batch 1520/6332... Discriminator Loss: 1.3293... Generator Loss: 0.7389 This 20 batches takes:26.0 sec
Epoch 1/2... Batch 1540/6332... Discriminator Loss: 1.5621... Generator Loss: 0.6329 This 20 batches takes:25.7 sec
Epoch 1/2... Batch 1560/6332... Discriminator Loss: 1.2753... Generator Loss: 0.8719 This 20 batches takes:26.1 sec
Epoch 1/2... Batch 1580/6332... Discriminator Loss: 1.2832... Generator Loss: 0.8242 This 20 batches takes:26.1 sec
Epoch 1/2... Batch 1600/6332... Discriminator Loss: 1.5232... Generator Loss: 0.7469 This 20 batches takes:26.0 sec
Epoch 1/2... Batch 1620/6332... Discriminator Loss: 1.1835... Generator Loss: 0.6899 This 20 batches takes:27.8 sec
Epoch 1/2... Batch 1640/6332... Discriminator Loss: 1.4145... Generator Loss: 0.7834 This 20 batches takes:26.5 sec
Epoch 1/2... Batch 1660/6332... Discriminator Loss: 1.6356... Generator Loss: 0.6880 This 20 batches takes:26.1 sec
Epoch 1/2... Batch 1680/6332... Discriminator Loss: 1.5697... Generator Loss: 0.5554 This 20 batches takes:26.3 sec
Epoch 1/2... Batch 1700/6332... Discriminator Loss: 1.4355... Generator Loss: 0.7527 This 20 batches takes:26.3 sec
Epoch 1/2... Batch 1720/6332... Discriminator Loss: 1.2580... Generator Loss: 0.5453 This 20 batches takes:25.2 sec
Epoch 1/2... Batch 1740/6332... Discriminator Loss: 1.8558... Generator Loss: 0.5979 This 20 batches takes:25.5 sec
Epoch 1/2... Batch 1760/6332... Discriminator Loss: 1.2304... Generator Loss: 0.7384 This 20 batches takes:25.3 sec
Epoch 1/2... Batch 1780/6332... Discriminator Loss: 1.2707... Generator Loss: 0.6293 This 20 batches takes:25.2 sec
Epoch 1/2... Batch 1800/6332... Discriminator Loss: 1.4556... Generator Loss: 0.7896 This 20 batches takes:25.2 sec
Epoch 1/2... Batch 1820/6332... Discriminator Loss: 1.5197... Generator Loss: 0.9532 This 20 batches takes:25.5 sec
Epoch 1/2... Batch 1840/6332... Discriminator Loss: 1.3520... Generator Loss: 0.6402 This 20 batches takes:25.4 sec
Epoch 1/2... Batch 1860/6332... Discriminator Loss: 1.2802... Generator Loss: 0.9097 This 20 batches takes:25.2 sec
Epoch 1/2... Batch 1880/6332... Discriminator Loss: 1.3471... Generator Loss: 0.6424 This 20 batches takes:25.2 sec
Epoch 1/2... Batch 1900/6332... Discriminator Loss: 1.3804... Generator Loss: 0.8745 This 20 batches takes:25.1 sec
Epoch 1/2... Batch 1920/6332... Discriminator Loss: 1.4715... Generator Loss: 0.6110 This 20 batches takes:25.2 sec
Epoch 1/2... Batch 1940/6332... Discriminator Loss: 1.5340... Generator Loss: 0.5385 This 20 batches takes:25.6 sec
Epoch 1/2... Batch 1960/6332... Discriminator Loss: 1.5070... Generator Loss: 0.8273 This 20 batches takes:25.5 sec
Epoch 1/2... Batch 1980/6332... Discriminator Loss: 1.6065... Generator Loss: 0.6666 This 20 batches takes:25.5 sec
Epoch 1/2... Batch 2000/6332... Discriminator Loss: 1.5652... Generator Loss: 0.5871 This 20 batches takes:25.1 sec
Epoch 1/2... Batch 2020/6332... Discriminator Loss: 1.1988... Generator Loss: 1.0023 This 20 batches takes:25.9 sec
Epoch 1/2... Batch 2040/6332... Discriminator Loss: 1.4008... Generator Loss: 0.6755 This 20 batches takes:25.5 sec
Epoch 1/2... Batch 2060/6332... Discriminator Loss: 1.2304... Generator Loss: 0.7004 This 20 batches takes:25.2 sec
Epoch 1/2... Batch 2080/6332... Discriminator Loss: 1.7213... Generator Loss: 0.6340 This 20 batches takes:25.5 sec
Epoch 1/2... Batch 2100/6332... Discriminator Loss: 1.4373... Generator Loss: 0.6255 This 20 batches takes:25.2 sec
Epoch 1/2... Batch 2120/6332... Discriminator Loss: 1.4556... Generator Loss: 1.0417 This 20 batches takes:25.6 sec
Epoch 1/2... Batch 2140/6332... Discriminator Loss: 1.6214... Generator Loss: 0.4833 This 20 batches takes:25.5 sec
Epoch 1/2... Batch 2160/6332... Discriminator Loss: 1.4384... Generator Loss: 0.7433 This 20 batches takes:26.8 sec
Epoch 1/2... Batch 2180/6332... Discriminator Loss: 1.4052... Generator Loss: 0.9025 This 20 batches takes:25.9 sec
Epoch 1/2... Batch 2200/6332... Discriminator Loss: 1.5448... Generator Loss: 0.8246 This 20 batches takes:25.8 sec
Epoch 1/2... Batch 2220/6332... Discriminator Loss: 1.5060... Generator Loss: 0.6452 This 20 batches takes:25.5 sec
Epoch 1/2... Batch 2240/6332... Discriminator Loss: 1.5539... Generator Loss: 0.4860 This 20 batches takes:25.8 sec
Epoch 1/2... Batch 2260/6332... Discriminator Loss: 1.4058... Generator Loss: 0.7441 This 20 batches takes:25.8 sec
Epoch 1/2... Batch 2280/6332... Discriminator Loss: 1.2502... Generator Loss: 0.5575 This 20 batches takes:25.8 sec
Epoch 1/2... Batch 2300/6332... Discriminator Loss: 1.4839... Generator Loss: 0.9969 This 20 batches takes:25.8 sec
Epoch 1/2... Batch 2320/6332... Discriminator Loss: 1.2871... Generator Loss: 0.9889 This 20 batches takes:25.5 sec
Epoch 1/2... Batch 2340/6332... Discriminator Loss: 1.6297... Generator Loss: 0.5962 This 20 batches takes:25.5 sec
Epoch 1/2... Batch 2360/6332... Discriminator Loss: 1.5034... Generator Loss: 0.6472 This 20 batches takes:25.1 sec
Epoch 1/2... Batch 2380/6332... Discriminator Loss: 1.4511... Generator Loss: 0.6144 This 20 batches takes:25.5 sec
Epoch 1/2... Batch 2400/6332... Discriminator Loss: 1.5776... Generator Loss: 0.5167 This 20 batches takes:25.3 sec
Epoch 1/2... Batch 2420/6332... Discriminator Loss: 1.5105... Generator Loss: 0.6994 This 20 batches takes:27.1 sec
Epoch 1/2... Batch 2440/6332... Discriminator Loss: 1.4939... Generator Loss: 0.5722 This 20 batches takes:27.1 sec
Epoch 1/2... Batch 2460/6332... Discriminator Loss: 1.3900... Generator Loss: 0.7240 This 20 batches takes:25.8 sec
Epoch 1/2... Batch 2480/6332... Discriminator Loss: 1.4842... Generator Loss: 0.8071 This 20 batches takes:25.3 sec
Epoch 1/2... Batch 2500/6332... Discriminator Loss: 1.6589... Generator Loss: 0.5486 This 20 batches takes:25.3 sec
Epoch 1/2... Batch 2520/6332... Discriminator Loss: 1.6116... Generator Loss: 0.6057 This 20 batches takes:25.3 sec
Epoch 1/2... Batch 2540/6332... Discriminator Loss: 1.2749... Generator Loss: 0.8846 This 20 batches takes:25.2 sec
Epoch 1/2... Batch 2560/6332... Discriminator Loss: 1.3477... Generator Loss: 0.8376 This 20 batches takes:25.4 sec
Epoch 1/2... Batch 2580/6332... Discriminator Loss: 1.4981... Generator Loss: 0.6578 This 20 batches takes:25.3 sec
Epoch 1/2... Batch 2600/6332... Discriminator Loss: 1.4344... Generator Loss: 0.6518 This 20 batches takes:25.7 sec
Epoch 1/2... Batch 2620/6332... Discriminator Loss: 1.4719... Generator Loss: 0.6611 This 20 batches takes:25.4 sec
Epoch 1/2... Batch 2640/6332... Discriminator Loss: 1.5566... Generator Loss: 0.7357 This 20 batches takes:25.6 sec
Epoch 1/2... Batch 2660/6332... Discriminator Loss: 1.4051... Generator Loss: 0.7479 This 20 batches takes:25.2 sec
Epoch 1/2... Batch 2680/6332... Discriminator Loss: 1.5308... Generator Loss: 0.5168 This 20 batches takes:25.4 sec
Epoch 1/2... Batch 2700/6332... Discriminator Loss: 1.3587... Generator Loss: 0.7779 This 20 batches takes:25.5 sec
Epoch 1/2... Batch 2720/6332... Discriminator Loss: 1.5097... Generator Loss: 0.8577 This 20 batches takes:25.4 sec
Epoch 1/2... Batch 2740/6332... Discriminator Loss: 1.5554... Generator Loss: 0.6893 This 20 batches takes:25.6 sec
Epoch 1/2... Batch 2760/6332... Discriminator Loss: 1.6382... Generator Loss: 0.6580 This 20 batches takes:25.2 sec
Epoch 1/2... Batch 2780/6332... Discriminator Loss: 1.4248... Generator Loss: 0.6790 This 20 batches takes:25.9 sec
Epoch 1/2... Batch 2800/6332... Discriminator Loss: 1.3785... Generator Loss: 0.7308 This 20 batches takes:26.0 sec
Epoch 1/2... Batch 2820/6332... Discriminator Loss: 1.3369... Generator Loss: 0.6700 This 20 batches takes:26.5 sec
Epoch 1/2... Batch 2840/6332... Discriminator Loss: 1.5048... Generator Loss: 0.8399 This 20 batches takes:25.4 sec
Epoch 1/2... Batch 2860/6332... Discriminator Loss: 1.5622... Generator Loss: 0.8692 This 20 batches takes:25.5 sec
Epoch 1/2... Batch 2880/6332... Discriminator Loss: 1.2777... Generator Loss: 0.7216 This 20 batches takes:25.5 sec
Epoch 1/2... Batch 2900/6332... Discriminator Loss: 1.4143... Generator Loss: 0.7813 This 20 batches takes:25.6 sec
Epoch 1/2... Batch 2920/6332... Discriminator Loss: 1.4620... Generator Loss: 0.8717 This 20 batches takes:25.5 sec
Epoch 1/2... Batch 2940/6332... Discriminator Loss: 1.4707... Generator Loss: 0.9023 This 20 batches takes:25.2 sec
Epoch 1/2... Batch 2960/6332... Discriminator Loss: 1.4203... Generator Loss: 0.5021 This 20 batches takes:25.2 sec
Epoch 1/2... Batch 2980/6332... Discriminator Loss: 1.3560... Generator Loss: 0.6538 This 20 batches takes:25.5 sec
Epoch 1/2... Batch 3000/6332... Discriminator Loss: 1.2568... Generator Loss: 0.7700 This 20 batches takes:25.5 sec
Epoch 1/2... Batch 3020/6332... Discriminator Loss: 1.4279... Generator Loss: 0.6884 This 20 batches takes:25.0 sec
Epoch 1/2... Batch 3040/6332... Discriminator Loss: 1.7455... Generator Loss: 0.6001 This 20 batches takes:25.5 sec
Epoch 1/2... Batch 3060/6332... Discriminator Loss: 1.6141... Generator Loss: 0.5682 This 20 batches takes:25.5 sec
Epoch 1/2... Batch 3080/6332... Discriminator Loss: 1.4246... Generator Loss: 0.7529 This 20 batches takes:25.2 sec
Epoch 1/2... Batch 3100/6332... Discriminator Loss: 1.2040... Generator Loss: 0.6984 This 20 batches takes:25.5 sec
Epoch 1/2... Batch 3120/6332... Discriminator Loss: 1.7761... Generator Loss: 0.5470 This 20 batches takes:25.3 sec
Epoch 1/2... Batch 3140/6332... Discriminator Loss: 1.6003... Generator Loss: 0.6218 This 20 batches takes:25.5 sec
Epoch 1/2... Batch 3160/6332... Discriminator Loss: 1.5095... Generator Loss: 0.6944 This 20 batches takes:25.2 sec
Epoch 1/2... Batch 3180/6332... Discriminator Loss: 1.5607... Generator Loss: 0.6699 This 20 batches takes:25.5 sec
Epoch 1/2... Batch 3200/6332... Discriminator Loss: 1.4560... Generator Loss: 0.6377 This 20 batches takes:25.2 sec
Epoch 1/2... Batch 3220/6332... Discriminator Loss: 1.4802... Generator Loss: 0.6164 This 20 batches takes:26.5 sec
Epoch 1/2... Batch 3240/6332... Discriminator Loss: 1.3899... Generator Loss: 0.8023 This 20 batches takes:25.6 sec
Epoch 1/2... Batch 3260/6332... Discriminator Loss: 1.2874... Generator Loss: 0.8364 This 20 batches takes:25.6 sec
Epoch 1/2... Batch 3280/6332... Discriminator Loss: 1.5247... Generator Loss: 0.6530 This 20 batches takes:25.4 sec
Epoch 1/2... Batch 3300/6332... Discriminator Loss: 1.3750... Generator Loss: 0.8143 This 20 batches takes:25.3 sec
Epoch 1/2... Batch 3320/6332... Discriminator Loss: 1.6172... Generator Loss: 0.8998 This 20 batches takes:25.4 sec
Epoch 1/2... Batch 3340/6332... Discriminator Loss: 1.3944... Generator Loss: 0.7129 This 20 batches takes:25.2 sec
Epoch 1/2... Batch 3360/6332... Discriminator Loss: 1.5513... Generator Loss: 0.6856 This 20 batches takes:25.3 sec
Epoch 1/2... Batch 3380/6332... Discriminator Loss: 1.5906... Generator Loss: 0.6740 This 20 batches takes:25.2 sec
Epoch 1/2... Batch 3400/6332... Discriminator Loss: 1.4111... Generator Loss: 0.7617 This 20 batches takes:25.4 sec
Epoch 1/2... Batch 3420/6332... Discriminator Loss: 1.5158... Generator Loss: 0.7429 This 20 batches takes:25.4 sec
Epoch 1/2... Batch 3440/6332... Discriminator Loss: 1.4145... Generator Loss: 0.8089 This 20 batches takes:25.6 sec
Epoch 1/2... Batch 3460/6332... Discriminator Loss: 1.5992... Generator Loss: 0.9338 This 20 batches takes:25.3 sec
Epoch 1/2... Batch 3480/6332... Discriminator Loss: 1.4566... Generator Loss: 0.6123 This 20 batches takes:25.2 sec
Epoch 1/2... Batch 3500/6332... Discriminator Loss: 1.6858... Generator Loss: 0.7553 This 20 batches takes:25.1 sec
Epoch 1/2... Batch 3520/6332... Discriminator Loss: 1.4028... Generator Loss: 0.6283 This 20 batches takes:25.6 sec
Epoch 1/2... Batch 3540/6332... Discriminator Loss: 1.4087... Generator Loss: 0.7821 This 20 batches takes:25.4 sec
Epoch 1/2... Batch 3560/6332... Discriminator Loss: 1.6412... Generator Loss: 0.5237 This 20 batches takes:25.3 sec
Epoch 1/2... Batch 3580/6332... Discriminator Loss: 1.4325... Generator Loss: 0.7789 This 20 batches takes:25.5 sec
Epoch 1/2... Batch 3600/6332... Discriminator Loss: 1.6055... Generator Loss: 0.5840 This 20 batches takes:25.2 sec
Epoch 1/2... Batch 3620/6332... Discriminator Loss: 1.4440... Generator Loss: 0.6294 This 20 batches takes:26.5 sec
Epoch 1/2... Batch 3640/6332... Discriminator Loss: 1.4331... Generator Loss: 0.6669 This 20 batches takes:25.5 sec
Epoch 1/2... Batch 3660/6332... Discriminator Loss: 1.3220... Generator Loss: 0.6999 This 20 batches takes:25.2 sec
Epoch 1/2... Batch 3680/6332... Discriminator Loss: 1.4342... Generator Loss: 0.6322 This 20 batches takes:25.2 sec
Epoch 1/2... Batch 3700/6332... Discriminator Loss: 1.3733... Generator Loss: 0.6010 This 20 batches takes:25.4 sec
Epoch 1/2... Batch 3720/6332... Discriminator Loss: 1.5770... Generator Loss: 0.5755 This 20 batches takes:25.4 sec
Epoch 1/2... Batch 3740/6332... Discriminator Loss: 1.5095... Generator Loss: 0.8183 This 20 batches takes:25.5 sec
Epoch 1/2... Batch 3760/6332... Discriminator Loss: 1.5153... Generator Loss: 0.8001 This 20 batches takes:25.2 sec
Epoch 1/2... Batch 3780/6332... Discriminator Loss: 1.4627... Generator Loss: 0.6333 This 20 batches takes:25.5 sec
Epoch 1/2... Batch 3800/6332... Discriminator Loss: 1.6402... Generator Loss: 0.6903 This 20 batches takes:25.6 sec
Epoch 1/2... Batch 3820/6332... Discriminator Loss: 1.5451... Generator Loss: 0.6639 This 20 batches takes:25.1 sec
Epoch 1/2... Batch 3840/6332... Discriminator Loss: 1.4047... Generator Loss: 0.7425 This 20 batches takes:25.4 sec
Epoch 1/2... Batch 3860/6332... Discriminator Loss: 1.5542... Generator Loss: 1.0182 This 20 batches takes:25.1 sec
Epoch 1/2... Batch 3880/6332... Discriminator Loss: 1.5216... Generator Loss: 0.8971 This 20 batches takes:25.7 sec
Epoch 1/2... Batch 3900/6332... Discriminator Loss: 1.3399... Generator Loss: 0.7790 This 20 batches takes:25.5 sec
Epoch 1/2... Batch 3920/6332... Discriminator Loss: 1.4301... Generator Loss: 0.7948 This 20 batches takes:25.4 sec
Epoch 1/2... Batch 3940/6332... Discriminator Loss: 1.4148... Generator Loss: 0.7639 This 20 batches takes:25.5 sec
Epoch 1/2... Batch 3960/6332... Discriminator Loss: 1.4714... Generator Loss: 0.7924 This 20 batches takes:25.3 sec
Epoch 1/2... Batch 3980/6332... Discriminator Loss: 1.5703... Generator Loss: 0.7460 This 20 batches takes:25.4 sec
Epoch 1/2... Batch 4000/6332... Discriminator Loss: 1.4537... Generator Loss: 0.6733 This 20 batches takes:25.5 sec
Epoch 1/2... Batch 4020/6332... Discriminator Loss: 1.5962... Generator Loss: 0.5853 This 20 batches takes:26.4 sec
Epoch 1/2... Batch 4040/6332... Discriminator Loss: 1.4257... Generator Loss: 0.6765 This 20 batches takes:25.5 sec
Epoch 1/2... Batch 4060/6332... Discriminator Loss: 1.4654... Generator Loss: 0.6847 This 20 batches takes:25.5 sec
Epoch 1/2... Batch 4080/6332... Discriminator Loss: 1.5316... Generator Loss: 0.7474 This 20 batches takes:25.0 sec
Epoch 1/2... Batch 4100/6332... Discriminator Loss: 1.3418... Generator Loss: 0.6963 This 20 batches takes:25.5 sec
Epoch 1/2... Batch 4120/6332... Discriminator Loss: 1.6032... Generator Loss: 0.7073 This 20 batches takes:25.4 sec
Epoch 1/2... Batch 4140/6332... Discriminator Loss: 1.4045... Generator Loss: 0.6287 This 20 batches takes:25.4 sec
Epoch 1/2... Batch 4160/6332... Discriminator Loss: 1.3114... Generator Loss: 0.6906 This 20 batches takes:25.3 sec
Epoch 1/2... Batch 4180/6332... Discriminator Loss: 1.6354... Generator Loss: 0.6186 This 20 batches takes:25.0 sec
Epoch 1/2... Batch 4200/6332... Discriminator Loss: 1.4700... Generator Loss: 0.6776 This 20 batches takes:25.4 sec
Epoch 1/2... Batch 4220/6332... Discriminator Loss: 1.3493... Generator Loss: 0.6789 This 20 batches takes:24.9 sec
Epoch 1/2... Batch 4240/6332... Discriminator Loss: 1.4065... Generator Loss: 0.6992 This 20 batches takes:25.5 sec
Epoch 1/2... Batch 4260/6332... Discriminator Loss: 1.2635... Generator Loss: 0.6609 This 20 batches takes:25.3 sec
Epoch 1/2... Batch 4280/6332... Discriminator Loss: 1.5220... Generator Loss: 0.6551 This 20 batches takes:26.2 sec
Epoch 1/2... Batch 4300/6332... Discriminator Loss: 1.4829... Generator Loss: 0.6445 This 20 batches takes:25.8 sec
Epoch 1/2... Batch 4320/6332... Discriminator Loss: 1.4475... Generator Loss: 0.7310 This 20 batches takes:26.1 sec
Epoch 1/2... Batch 4340/6332... Discriminator Loss: 1.4686... Generator Loss: 0.6197 This 20 batches takes:25.9 sec
Epoch 1/2... Batch 4360/6332... Discriminator Loss: 1.3598... Generator Loss: 0.5856 This 20 batches takes:25.6 sec
Epoch 1/2... Batch 4380/6332... Discriminator Loss: 1.5051... Generator Loss: 0.8736 This 20 batches takes:25.5 sec
Epoch 1/2... Batch 4400/6332... Discriminator Loss: 1.5158... Generator Loss: 0.7927 This 20 batches takes:25.7 sec
Epoch 1/2... Batch 4420/6332... Discriminator Loss: 1.6412... Generator Loss: 0.6414 This 20 batches takes:26.6 sec
Epoch 1/2... Batch 4440/6332... Discriminator Loss: 1.6412... Generator Loss: 0.7684 This 20 batches takes:25.7 sec
Epoch 1/2... Batch 4460/6332... Discriminator Loss: 1.2916... Generator Loss: 0.8648 This 20 batches takes:25.4 sec
Epoch 1/2... Batch 4480/6332... Discriminator Loss: 1.4607... Generator Loss: 0.8612 This 20 batches takes:25.6 sec
Epoch 1/2... Batch 4500/6332... Discriminator Loss: 1.4840... Generator Loss: 0.6095 This 20 batches takes:25.6 sec
Epoch 1/2... Batch 4520/6332... Discriminator Loss: 1.2639... Generator Loss: 0.8481 This 20 batches takes:25.3 sec
Epoch 1/2... Batch 4540/6332... Discriminator Loss: 1.4527... Generator Loss: 0.6968 This 20 batches takes:25.6 sec
Epoch 1/2... Batch 4560/6332... Discriminator Loss: 1.4760... Generator Loss: 0.5856 This 20 batches takes:25.6 sec
Epoch 1/2... Batch 4580/6332... Discriminator Loss: 1.4270... Generator Loss: 0.8391 This 20 batches takes:25.2 sec
Epoch 1/2... Batch 4600/6332... Discriminator Loss: 1.3988... Generator Loss: 0.7182 This 20 batches takes:25.8 sec
Epoch 1/2... Batch 4620/6332... Discriminator Loss: 1.5013... Generator Loss: 0.6726 This 20 batches takes:25.3 sec
Epoch 1/2... Batch 4640/6332... Discriminator Loss: 1.3990... Generator Loss: 0.6781 This 20 batches takes:25.5 sec
Epoch 1/2... Batch 4660/6332... Discriminator Loss: 1.4653... Generator Loss: 0.6576 This 20 batches takes:25.3 sec
Epoch 1/2... Batch 4680/6332... Discriminator Loss: 1.6785... Generator Loss: 0.6218 This 20 batches takes:25.5 sec
Epoch 1/2... Batch 4700/6332... Discriminator Loss: 1.2951... Generator Loss: 0.6513 This 20 batches takes:25.7 sec
Epoch 1/2... Batch 4720/6332... Discriminator Loss: 1.5087... Generator Loss: 0.7284 This 20 batches takes:25.6 sec
Epoch 1/2... Batch 4740/6332... Discriminator Loss: 1.3054... Generator Loss: 0.7072 This 20 batches takes:25.3 sec
Epoch 1/2... Batch 4760/6332... Discriminator Loss: 1.3944... Generator Loss: 0.6851 This 20 batches takes:25.7 sec
Epoch 1/2... Batch 4780/6332... Discriminator Loss: 1.3790... Generator Loss: 0.5696 This 20 batches takes:25.5 sec
Epoch 1/2... Batch 4800/6332... Discriminator Loss: 1.5349... Generator Loss: 0.6338 This 20 batches takes:25.6 sec
Epoch 1/2... Batch 4820/6332... Discriminator Loss: 1.3529... Generator Loss: 0.8741 This 20 batches takes:26.5 sec
Epoch 1/2... Batch 4840/6332... Discriminator Loss: 1.5498... Generator Loss: 0.7796 This 20 batches takes:25.6 sec
Epoch 1/2... Batch 4860/6332... Discriminator Loss: 1.3807... Generator Loss: 0.8205 This 20 batches takes:25.7 sec
Epoch 1/2... Batch 4880/6332... Discriminator Loss: 1.4139... Generator Loss: 0.7106 This 20 batches takes:25.6 sec
Epoch 1/2... Batch 4900/6332... Discriminator Loss: 1.3419... Generator Loss: 0.7508 This 20 batches takes:25.7 sec
Epoch 1/2... Batch 4920/6332... Discriminator Loss: 1.5235... Generator Loss: 0.5998 This 20 batches takes:25.3 sec
Epoch 1/2... Batch 4940/6332... Discriminator Loss: 1.3859... Generator Loss: 0.8887 This 20 batches takes:25.3 sec
Epoch 1/2... Batch 4960/6332... Discriminator Loss: 1.4715... Generator Loss: 0.7842 This 20 batches takes:25.7 sec
Epoch 1/2... Batch 4980/6332... Discriminator Loss: 1.6089... Generator Loss: 0.6928 This 20 batches takes:25.5 sec
Epoch 1/2... Batch 5000/6332... Discriminator Loss: 1.6177... Generator Loss: 0.6428 This 20 batches takes:25.5 sec
Epoch 1/2... Batch 5020/6332... Discriminator Loss: 1.3989... Generator Loss: 0.6159 This 20 batches takes:25.8 sec
Epoch 1/2... Batch 5040/6332... Discriminator Loss: 1.4895... Generator Loss: 0.6591 This 20 batches takes:25.5 sec
Epoch 1/2... Batch 5060/6332... Discriminator Loss: 1.4472... Generator Loss: 0.7005 This 20 batches takes:25.7 sec
Epoch 1/2... Batch 5080/6332... Discriminator Loss: 1.5488... Generator Loss: 0.6712 This 20 batches takes:25.4 sec
Epoch 1/2... Batch 5100/6332... Discriminator Loss: 1.5398... Generator Loss: 0.6952 This 20 batches takes:26.4 sec
Epoch 1/2... Batch 5120/6332... Discriminator Loss: 1.4824... Generator Loss: 0.7374 This 20 batches takes:25.9 sec
Epoch 1/2... Batch 5140/6332... Discriminator Loss: 1.1772... Generator Loss: 0.6451 This 20 batches takes:25.7 sec
Epoch 1/2... Batch 5160/6332... Discriminator Loss: 1.4866... Generator Loss: 0.6648 This 20 batches takes:25.4 sec
Epoch 1/2... Batch 5180/6332... Discriminator Loss: 1.6215... Generator Loss: 0.7813 This 20 batches takes:25.3 sec
Epoch 1/2... Batch 5200/6332... Discriminator Loss: 1.3648... Generator Loss: 0.8683 This 20 batches takes:25.7 sec
Epoch 1/2... Batch 5220/6332... Discriminator Loss: 1.3226... Generator Loss: 0.8366 This 20 batches takes:26.6 sec
Epoch 1/2... Batch 5240/6332... Discriminator Loss: 1.5087... Generator Loss: 0.6465 This 20 batches takes:25.5 sec
Epoch 1/2... Batch 5260/6332... Discriminator Loss: 1.5106... Generator Loss: 0.8848 This 20 batches takes:25.6 sec
Epoch 1/2... Batch 5280/6332... Discriminator Loss: 1.5012... Generator Loss: 0.7170 This 20 batches takes:25.5 sec
Epoch 1/2... Batch 5300/6332... Discriminator Loss: 1.4188... Generator Loss: 0.7217 This 20 batches takes:25.6 sec
Epoch 1/2... Batch 5320/6332... Discriminator Loss: 1.4193... Generator Loss: 0.7468 This 20 batches takes:25.5 sec
Epoch 1/2... Batch 5340/6332... Discriminator Loss: 1.4903... Generator Loss: 0.9135 This 20 batches takes:25.6 sec
Epoch 1/2... Batch 5360/6332... Discriminator Loss: 1.3311... Generator Loss: 0.7035 This 20 batches takes:25.6 sec
Epoch 1/2... Batch 5380/6332... Discriminator Loss: 1.4758... Generator Loss: 0.6579 This 20 batches takes:25.6 sec
Epoch 1/2... Batch 5400/6332... Discriminator Loss: 1.3895... Generator Loss: 0.8975 This 20 batches takes:25.6 sec
Epoch 1/2... Batch 5420/6332... Discriminator Loss: 1.4943... Generator Loss: 0.8910 This 20 batches takes:25.7 sec
Epoch 1/2... Batch 5440/6332... Discriminator Loss: 1.5387... Generator Loss: 0.6111 This 20 batches takes:25.5 sec
Epoch 1/2... Batch 5460/6332... Discriminator Loss: 1.4007... Generator Loss: 0.6937 This 20 batches takes:25.4 sec
Epoch 1/2... Batch 5480/6332... Discriminator Loss: 1.4988... Generator Loss: 0.5652 This 20 batches takes:25.4 sec
Epoch 1/2... Batch 5500/6332... Discriminator Loss: 1.4748... Generator Loss: 0.6254 This 20 batches takes:25.3 sec
Epoch 1/2... Batch 5520/6332... Discriminator Loss: 1.3559... Generator Loss: 0.6171 This 20 batches takes:25.8 sec
Epoch 1/2... Batch 5540/6332... Discriminator Loss: 1.4625... Generator Loss: 0.5404 This 20 batches takes:26.0 sec
Epoch 1/2... Batch 5560/6332... Discriminator Loss: 1.5885... Generator Loss: 0.6567 This 20 batches takes:25.5 sec
Epoch 1/2... Batch 5580/6332... Discriminator Loss: 1.3888... Generator Loss: 0.7331 This 20 batches takes:25.7 sec
Epoch 1/2... Batch 5600/6332... Discriminator Loss: 1.5396... Generator Loss: 0.6303 This 20 batches takes:25.5 sec
Epoch 1/2... Batch 5620/6332... Discriminator Loss: 1.4111... Generator Loss: 0.7483 This 20 batches takes:26.5 sec
Epoch 1/2... Batch 5640/6332... Discriminator Loss: 1.4904... Generator Loss: 0.7148 This 20 batches takes:25.6 sec
Epoch 1/2... Batch 5660/6332... Discriminator Loss: 1.3349... Generator Loss: 0.7023 This 20 batches takes:25.5 sec
Epoch 1/2... Batch 5680/6332... Discriminator Loss: 1.6840... Generator Loss: 0.9635 This 20 batches takes:25.3 sec
Epoch 1/2... Batch 5700/6332... Discriminator Loss: 1.4836... Generator Loss: 0.7350 This 20 batches takes:25.4 sec
Epoch 1/2... Batch 5720/6332... Discriminator Loss: 1.4124... Generator Loss: 0.7541 This 20 batches takes:25.5 sec
Epoch 1/2... Batch 5740/6332... Discriminator Loss: 1.4633... Generator Loss: 0.8444 This 20 batches takes:25.3 sec
Epoch 1/2... Batch 5760/6332... Discriminator Loss: 1.4651... Generator Loss: 0.6627 This 20 batches takes:25.8 sec
Epoch 1/2... Batch 5780/6332... Discriminator Loss: 1.3659... Generator Loss: 0.5965 This 20 batches takes:25.5 sec
Epoch 1/2... Batch 5800/6332... Discriminator Loss: 1.5371... Generator Loss: 0.8414 This 20 batches takes:25.7 sec
Epoch 1/2... Batch 5820/6332... Discriminator Loss: 1.4481... Generator Loss: 0.6519 This 20 batches takes:25.7 sec
Epoch 1/2... Batch 5840/6332... Discriminator Loss: 1.4588... Generator Loss: 0.5618 This 20 batches takes:25.6 sec
Epoch 1/2... Batch 5860/6332... Discriminator Loss: 1.4989... Generator Loss: 0.6548 This 20 batches takes:25.4 sec
Epoch 1/2... Batch 5880/6332... Discriminator Loss: 1.5097... Generator Loss: 0.8149 This 20 batches takes:25.7 sec
Epoch 1/2... Batch 5900/6332... Discriminator Loss: 1.5532... Generator Loss: 0.6862 This 20 batches takes:25.4 sec
Epoch 1/2... Batch 5920/6332... Discriminator Loss: 1.3992... Generator Loss: 0.7153 This 20 batches takes:25.6 sec
Epoch 1/2... Batch 5940/6332... Discriminator Loss: 1.3812... Generator Loss: 0.6484 This 20 batches takes:25.4 sec
Epoch 1/2... Batch 5960/6332... Discriminator Loss: 1.3402... Generator Loss: 0.8583 This 20 batches takes:25.9 sec
Epoch 1/2... Batch 5980/6332... Discriminator Loss: 1.4331... Generator Loss: 0.8287 This 20 batches takes:25.6 sec
Epoch 1/2... Batch 6000/6332... Discriminator Loss: 1.4503... Generator Loss: 0.7089 This 20 batches takes:25.5 sec
Epoch 1/2... Batch 6020/6332... Discriminator Loss: 1.3695... Generator Loss: 0.7683 This 20 batches takes:26.6 sec
Epoch 1/2... Batch 6040/6332... Discriminator Loss: 1.4718... Generator Loss: 0.6551 This 20 batches takes:25.7 sec
Epoch 1/2... Batch 6060/6332... Discriminator Loss: 1.4831... Generator Loss: 0.6417 This 20 batches takes:25.3 sec
Epoch 1/2... Batch 6080/6332... Discriminator Loss: 1.3828... Generator Loss: 0.6138 This 20 batches takes:25.7 sec
Epoch 1/2... Batch 6100/6332... Discriminator Loss: 1.5226... Generator Loss: 0.7998 This 20 batches takes:25.3 sec
Epoch 1/2... Batch 6120/6332... Discriminator Loss: 1.3489... Generator Loss: 0.7917 This 20 batches takes:25.6 sec
Epoch 1/2... Batch 6140/6332... Discriminator Loss: 1.5229... Generator Loss: 0.6597 This 20 batches takes:25.9 sec
Epoch 1/2... Batch 6160/6332... Discriminator Loss: 1.4523... Generator Loss: 0.8123 This 20 batches takes:25.3 sec
Epoch 1/2... Batch 6180/6332... Discriminator Loss: 1.3649... Generator Loss: 0.8116 This 20 batches takes:25.6 sec
Epoch 1/2... Batch 6200/6332... Discriminator Loss: 1.3567... Generator Loss: 0.6808 This 20 batches takes:25.5 sec
Epoch 1/2... Batch 6220/6332... Discriminator Loss: 1.3754... Generator Loss: 0.7381 This 20 batches takes:25.3 sec
Epoch 1/2... Batch 6240/6332... Discriminator Loss: 1.5038... Generator Loss: 0.7662 This 20 batches takes:25.5 sec
Epoch 1/2... Batch 6260/6332... Discriminator Loss: 1.5187... Generator Loss: 0.6474 This 20 batches takes:25.5 sec
Epoch 1/2... Batch 6280/6332... Discriminator Loss: 1.3910... Generator Loss: 0.8342 This 20 batches takes:25.4 sec
Epoch 1/2... Batch 6300/6332... Discriminator Loss: 1.5638... Generator Loss: 0.6187 This 20 batches takes:25.5 sec
Epoch 1/2... Batch 6320/6332... Discriminator Loss: 1.4826... Generator Loss: 0.6583 This 20 batches takes:25.3 sec
Epoch 2/2... Batch 9/6332... Discriminator Loss: 1.6558... Generator Loss: 0.5436 This 20 batches takes:23.4 sec
Epoch 2/2... Batch 29/6332... Discriminator Loss: 1.3793... Generator Loss: 0.6095 This 20 batches takes:21.8 sec
Epoch 2/2... Batch 49/6332... Discriminator Loss: 1.3771... Generator Loss: 0.7394 This 20 batches takes:22.0 sec
Epoch 2/2... Batch 69/6332... Discriminator Loss: 1.4914... Generator Loss: 0.7105 This 20 batches takes:22.0 sec
Epoch 2/2... Batch 89/6332... Discriminator Loss: 1.4577... Generator Loss: 0.6922 This 20 batches takes:23.0 sec
Epoch 2/2... Batch 109/6332... Discriminator Loss: 1.4973... Generator Loss: 0.8624 This 20 batches takes:21.7 sec
Epoch 2/2... Batch 129/6332... Discriminator Loss: 1.3779... Generator Loss: 0.7470 This 20 batches takes:21.7 sec
Epoch 2/2... Batch 149/6332... Discriminator Loss: 1.4051... Generator Loss: 0.7811 This 20 batches takes:21.7 sec
Epoch 2/2... Batch 169/6332... Discriminator Loss: 1.2967... Generator Loss: 0.7023 This 20 batches takes:21.9 sec
Epoch 2/2... Batch 189/6332... Discriminator Loss: 1.3736... Generator Loss: 0.7016 This 20 batches takes:22.2 sec
Epoch 2/2... Batch 209/6332... Discriminator Loss: 1.6355... Generator Loss: 0.6826 This 20 batches takes:21.8 sec
Epoch 2/2... Batch 229/6332... Discriminator Loss: 1.5215... Generator Loss: 0.6344 This 20 batches takes:21.7 sec
Epoch 2/2... Batch 249/6332... Discriminator Loss: 1.4283... Generator Loss: 0.7119 This 20 batches takes:21.8 sec
Epoch 2/2... Batch 269/6332... Discriminator Loss: 1.5574... Generator Loss: 0.6163 This 20 batches takes:21.7 sec
Epoch 2/2... Batch 289/6332... Discriminator Loss: 1.5545... Generator Loss: 0.6692 This 20 batches takes:21.7 sec
Epoch 2/2... Batch 309/6332... Discriminator Loss: 1.4217... Generator Loss: 0.8302 This 20 batches takes:21.8 sec
Epoch 2/2... Batch 329/6332... Discriminator Loss: 1.3739... Generator Loss: 0.8161 This 20 batches takes:21.8 sec
Epoch 2/2... Batch 349/6332... Discriminator Loss: 1.3278... Generator Loss: 0.7718 This 20 batches takes:21.9 sec
Epoch 2/2... Batch 369/6332... Discriminator Loss: 1.2231... Generator Loss: 0.6565 This 20 batches takes:21.8 sec
Epoch 2/2... Batch 389/6332... Discriminator Loss: 1.4589... Generator Loss: 0.8449 This 20 batches takes:21.7 sec
Epoch 2/2... Batch 409/6332... Discriminator Loss: 1.3974... Generator Loss: 0.8065 This 20 batches takes:21.7 sec
Epoch 2/2... Batch 429/6332... Discriminator Loss: 1.5419... Generator Loss: 0.6497 This 20 batches takes:21.7 sec
Epoch 2/2... Batch 449/6332... Discriminator Loss: 1.4447... Generator Loss: 0.8244 This 20 batches takes:21.7 sec
Epoch 2/2... Batch 469/6332... Discriminator Loss: 1.2810... Generator Loss: 0.8149 This 20 batches takes:21.7 sec
Epoch 2/2... Batch 489/6332... Discriminator Loss: 1.4297... Generator Loss: 0.6845 This 20 batches takes:22.8 sec
Epoch 2/2... Batch 509/6332... Discriminator Loss: 1.2773... Generator Loss: 0.7654 This 20 batches takes:21.7 sec
Epoch 2/2... Batch 529/6332... Discriminator Loss: 1.6084... Generator Loss: 0.6540 This 20 batches takes:21.7 sec
Epoch 2/2... Batch 549/6332... Discriminator Loss: 1.3421... Generator Loss: 0.7853 This 20 batches takes:21.8 sec
Epoch 2/2... Batch 569/6332... Discriminator Loss: 1.4937... Generator Loss: 0.7266 This 20 batches takes:21.7 sec
Epoch 2/2... Batch 589/6332... Discriminator Loss: 1.3949... Generator Loss: 0.7257 This 20 batches takes:21.7 sec
Epoch 2/2... Batch 609/6332... Discriminator Loss: 1.5901... Generator Loss: 0.8018 This 20 batches takes:21.7 sec
Epoch 2/2... Batch 629/6332... Discriminator Loss: 1.5418... Generator Loss: 0.5679 This 20 batches takes:21.7 sec
Epoch 2/2... Batch 649/6332... Discriminator Loss: 1.3596... Generator Loss: 0.6419 This 20 batches takes:21.7 sec
Epoch 2/2... Batch 669/6332... Discriminator Loss: 1.3573... Generator Loss: 0.6718 This 20 batches takes:21.7 sec
Epoch 2/2... Batch 689/6332... Discriminator Loss: 1.3670... Generator Loss: 0.7788 This 20 batches takes:21.7 sec
Epoch 2/2... Batch 709/6332... Discriminator Loss: 1.4152... Generator Loss: 0.7960 This 20 batches takes:21.7 sec
Epoch 2/2... Batch 729/6332... Discriminator Loss: 1.5468... Generator Loss: 0.6046 This 20 batches takes:21.8 sec
Epoch 2/2... Batch 749/6332... Discriminator Loss: 1.3812... Generator Loss: 0.7748 This 20 batches takes:21.7 sec
Epoch 2/2... Batch 769/6332... Discriminator Loss: 1.3151... Generator Loss: 0.7792 This 20 batches takes:21.7 sec
Epoch 2/2... Batch 789/6332... Discriminator Loss: 1.3808... Generator Loss: 0.6543 This 20 batches takes:21.8 sec
Epoch 2/2... Batch 809/6332... Discriminator Loss: 1.4157... Generator Loss: 0.7519 This 20 batches takes:21.7 sec
Epoch 2/2... Batch 829/6332... Discriminator Loss: 1.3524... Generator Loss: 0.8021 This 20 batches takes:21.7 sec
Epoch 2/2... Batch 849/6332... Discriminator Loss: 1.4851... Generator Loss: 0.6806 This 20 batches takes:21.8 sec
Epoch 2/2... Batch 869/6332... Discriminator Loss: 1.4981... Generator Loss: 0.6612 This 20 batches takes:21.7 sec
Epoch 2/2... Batch 889/6332... Discriminator Loss: 1.6266... Generator Loss: 0.9525 This 20 batches takes:22.7 sec
Epoch 2/2... Batch 909/6332... Discriminator Loss: 1.3223... Generator Loss: 0.5817 This 20 batches takes:21.8 sec
Epoch 2/2... Batch 929/6332... Discriminator Loss: 1.4076... Generator Loss: 0.7804 This 20 batches takes:21.7 sec
Epoch 2/2... Batch 949/6332... Discriminator Loss: 1.2918... Generator Loss: 0.7837 This 20 batches takes:21.7 sec
Epoch 2/2... Batch 969/6332... Discriminator Loss: 1.3141... Generator Loss: 0.7330 This 20 batches takes:21.8 sec
Epoch 2/2... Batch 989/6332... Discriminator Loss: 1.4027... Generator Loss: 1.0983 This 20 batches takes:21.7 sec
Epoch 2/2... Batch 1009/6332... Discriminator Loss: 1.3964... Generator Loss: 1.1092 This 20 batches takes:21.7 sec
Epoch 2/2... Batch 1029/6332... Discriminator Loss: 1.4035... Generator Loss: 0.6852 This 20 batches takes:21.8 sec
Epoch 2/2... Batch 1049/6332... Discriminator Loss: 1.3465... Generator Loss: 0.8224 This 20 batches takes:21.7 sec
Epoch 2/2... Batch 1069/6332... Discriminator Loss: 1.5809... Generator Loss: 0.5886 This 20 batches takes:21.7 sec
Epoch 2/2... Batch 1089/6332... Discriminator Loss: 1.4208... Generator Loss: 0.7746 This 20 batches takes:21.7 sec
Epoch 2/2... Batch 1109/6332... Discriminator Loss: 1.5236... Generator Loss: 0.7861 This 20 batches takes:21.6 sec
Epoch 2/2... Batch 1129/6332... Discriminator Loss: 1.4193... Generator Loss: 0.6974 This 20 batches takes:21.6 sec
Epoch 2/2... Batch 1149/6332... Discriminator Loss: 1.4635... Generator Loss: 0.7054 This 20 batches takes:21.7 sec
Epoch 2/2... Batch 1169/6332... Discriminator Loss: 1.3995... Generator Loss: 0.7204 This 20 batches takes:21.7 sec
Epoch 2/2... Batch 1189/6332... Discriminator Loss: 1.6027... Generator Loss: 0.8799 This 20 batches takes:21.7 sec
Epoch 2/2... Batch 1209/6332... Discriminator Loss: 1.3770... Generator Loss: 0.7004 This 20 batches takes:21.7 sec
Epoch 2/2... Batch 1229/6332... Discriminator Loss: 1.3850... Generator Loss: 0.7241 This 20 batches takes:21.7 sec
Epoch 2/2... Batch 1249/6332... Discriminator Loss: 1.5638... Generator Loss: 0.7277 This 20 batches takes:21.7 sec
Epoch 2/2... Batch 1269/6332... Discriminator Loss: 1.3460... Generator Loss: 0.6902 This 20 batches takes:21.7 sec
Epoch 2/2... Batch 1289/6332... Discriminator Loss: 1.4917... Generator Loss: 0.9014 This 20 batches takes:22.7 sec
Epoch 2/2... Batch 1309/6332... Discriminator Loss: 1.4016... Generator Loss: 0.7692 This 20 batches takes:21.7 sec
Epoch 2/2... Batch 1329/6332... Discriminator Loss: 1.4989... Generator Loss: 0.7259 This 20 batches takes:21.7 sec
Epoch 2/2... Batch 1349/6332... Discriminator Loss: 1.4504... Generator Loss: 0.6003 This 20 batches takes:21.7 sec
Epoch 2/2... Batch 1369/6332... Discriminator Loss: 1.5435... Generator Loss: 0.7845 This 20 batches takes:21.8 sec
Epoch 2/2... Batch 1389/6332... Discriminator Loss: 1.4724... Generator Loss: 0.7857 This 20 batches takes:21.8 sec
Epoch 2/2... Batch 1409/6332... Discriminator Loss: 1.5134... Generator Loss: 0.7245 This 20 batches takes:21.7 sec
Epoch 2/2... Batch 1429/6332... Discriminator Loss: 1.4807... Generator Loss: 0.5577 This 20 batches takes:21.7 sec
Epoch 2/2... Batch 1449/6332... Discriminator Loss: 1.4390... Generator Loss: 0.6299 This 20 batches takes:21.8 sec
Epoch 2/2... Batch 1469/6332... Discriminator Loss: 1.4753... Generator Loss: 0.5393 This 20 batches takes:21.7 sec
Epoch 2/2... Batch 1489/6332... Discriminator Loss: 1.2102... Generator Loss: 0.7178 This 20 batches takes:21.7 sec
Epoch 2/2... Batch 1509/6332... Discriminator Loss: 1.3510... Generator Loss: 0.8206 This 20 batches takes:21.8 sec
Epoch 2/2... Batch 1529/6332... Discriminator Loss: 1.4700... Generator Loss: 0.8923 This 20 batches takes:21.6 sec
Epoch 2/2... Batch 1549/6332... Discriminator Loss: 1.2684... Generator Loss: 0.8055 This 20 batches takes:21.7 sec
Epoch 2/2... Batch 1569/6332... Discriminator Loss: 1.4530... Generator Loss: 0.7242 This 20 batches takes:21.7 sec
Epoch 2/2... Batch 1589/6332... Discriminator Loss: 1.3714... Generator Loss: 0.9541 This 20 batches takes:21.7 sec
Epoch 2/2... Batch 1609/6332... Discriminator Loss: 1.3120... Generator Loss: 0.7711 This 20 batches takes:21.7 sec
Epoch 2/2... Batch 1629/6332... Discriminator Loss: 1.3889... Generator Loss: 0.7649 This 20 batches takes:21.8 sec
Epoch 2/2... Batch 1649/6332... Discriminator Loss: 1.4612... Generator Loss: 0.8022 This 20 batches takes:21.7 sec
Epoch 2/2... Batch 1669/6332... Discriminator Loss: 1.3110... Generator Loss: 0.8963 This 20 batches takes:21.7 sec
Epoch 2/2... Batch 1689/6332... Discriminator Loss: 1.3440... Generator Loss: 0.8340 This 20 batches takes:24.1 sec
Epoch 2/2... Batch 1709/6332... Discriminator Loss: 1.2937... Generator Loss: 0.9617 This 20 batches takes:21.7 sec
Epoch 2/2... Batch 1729/6332... Discriminator Loss: 1.2588... Generator Loss: 0.7673 This 20 batches takes:21.7 sec
Epoch 2/2... Batch 1749/6332... Discriminator Loss: 1.4077... Generator Loss: 0.7218 This 20 batches takes:21.7 sec
Epoch 2/2... Batch 1769/6332... Discriminator Loss: 1.4390... Generator Loss: 0.6962 This 20 batches takes:21.7 sec
Epoch 2/2... Batch 1789/6332... Discriminator Loss: 1.3162... Generator Loss: 0.6789 This 20 batches takes:21.8 sec
Epoch 2/2... Batch 1809/6332... Discriminator Loss: 1.4214... Generator Loss: 0.5620 This 20 batches takes:21.8 sec
Epoch 2/2... Batch 1829/6332... Discriminator Loss: 1.3769... Generator Loss: 0.8666 This 20 batches takes:21.7 sec
Epoch 2/2... Batch 1849/6332... Discriminator Loss: 1.5236... Generator Loss: 0.5763 This 20 batches takes:21.8 sec
Epoch 2/2... Batch 1869/6332... Discriminator Loss: 1.2089... Generator Loss: 0.7090 This 20 batches takes:21.8 sec
Epoch 2/2... Batch 1889/6332... Discriminator Loss: 1.2435... Generator Loss: 0.8883 This 20 batches takes:21.7 sec
Epoch 2/2... Batch 1909/6332... Discriminator Loss: 1.4679... Generator Loss: 0.6020 This 20 batches takes:21.8 sec
Epoch 2/2... Batch 1929/6332... Discriminator Loss: 1.4600... Generator Loss: 0.6836 This 20 batches takes:21.8 sec
Epoch 2/2... Batch 1949/6332... Discriminator Loss: 1.5193... Generator Loss: 0.8155 This 20 batches takes:21.7 sec
Epoch 2/2... Batch 1969/6332... Discriminator Loss: 1.4153... Generator Loss: 0.6936 This 20 batches takes:22.0 sec
Epoch 2/2... Batch 1989/6332... Discriminator Loss: 1.4060... Generator Loss: 0.6853 This 20 batches takes:21.9 sec
Epoch 2/2... Batch 2009/6332... Discriminator Loss: 1.4099... Generator Loss: 0.7238 This 20 batches takes:21.8 sec
Epoch 2/2... Batch 2029/6332... Discriminator Loss: 1.3815... Generator Loss: 0.6689 This 20 batches takes:21.9 sec
Epoch 2/2... Batch 2049/6332... Discriminator Loss: 1.3892... Generator Loss: 0.7450 This 20 batches takes:21.8 sec
Epoch 2/2... Batch 2069/6332... Discriminator Loss: 1.4089... Generator Loss: 0.6828 This 20 batches takes:21.7 sec
Epoch 2/2... Batch 2089/6332... Discriminator Loss: 1.3811... Generator Loss: 0.6584 This 20 batches takes:22.7 sec
Epoch 2/2... Batch 2109/6332... Discriminator Loss: 1.3748... Generator Loss: 1.0322 This 20 batches takes:21.8 sec
Epoch 2/2... Batch 2129/6332... Discriminator Loss: 1.4354... Generator Loss: 0.6799 This 20 batches takes:21.7 sec
Epoch 2/2... Batch 2149/6332... Discriminator Loss: 1.3118... Generator Loss: 0.6996 This 20 batches takes:21.8 sec
Epoch 2/2... Batch 2169/6332... Discriminator Loss: 1.4805... Generator Loss: 0.6455 This 20 batches takes:21.8 sec
Epoch 2/2... Batch 2189/6332... Discriminator Loss: 1.4621... Generator Loss: 0.5380 This 20 batches takes:21.7 sec
Epoch 2/2... Batch 2209/6332... Discriminator Loss: 1.4305... Generator Loss: 0.8796 This 20 batches takes:21.7 sec
Epoch 2/2... Batch 2229/6332... Discriminator Loss: 1.2863... Generator Loss: 0.6724 This 20 batches takes:21.8 sec
Epoch 2/2... Batch 2249/6332... Discriminator Loss: 1.4473... Generator Loss: 0.7623 This 20 batches takes:21.7 sec
Epoch 2/2... Batch 2269/6332... Discriminator Loss: 1.4571... Generator Loss: 0.7606 This 20 batches takes:21.7 sec
Epoch 2/2... Batch 2289/6332... Discriminator Loss: 1.4478... Generator Loss: 0.6003 This 20 batches takes:21.7 sec
Epoch 2/2... Batch 2309/6332... Discriminator Loss: 1.4617... Generator Loss: 0.6787 This 20 batches takes:21.7 sec
Epoch 2/2... Batch 2329/6332... Discriminator Loss: 1.4029... Generator Loss: 0.6985 This 20 batches takes:21.7 sec
Epoch 2/2... Batch 2349/6332... Discriminator Loss: 1.1973... Generator Loss: 0.9989 This 20 batches takes:21.8 sec
Epoch 2/2... Batch 2369/6332... Discriminator Loss: 1.5730... Generator Loss: 0.8179 This 20 batches takes:21.7 sec
Epoch 2/2... Batch 2389/6332... Discriminator Loss: 1.3960... Generator Loss: 0.8452 This 20 batches takes:21.8 sec
Epoch 2/2... Batch 2409/6332... Discriminator Loss: 1.3605... Generator Loss: 0.8229 This 20 batches takes:21.7 sec
Epoch 2/2... Batch 2429/6332... Discriminator Loss: 1.4638... Generator Loss: 0.8628 This 20 batches takes:21.8 sec
Epoch 2/2... Batch 2449/6332... Discriminator Loss: 1.4168... Generator Loss: 0.7900 This 20 batches takes:21.7 sec
Epoch 2/2... Batch 2469/6332... Discriminator Loss: 1.4274... Generator Loss: 0.8331 This 20 batches takes:21.8 sec
Epoch 2/2... Batch 2489/6332... Discriminator Loss: 1.3286... Generator Loss: 0.7307 This 20 batches takes:22.9 sec
Epoch 2/2... Batch 2509/6332... Discriminator Loss: 1.4701... Generator Loss: 0.8871 This 20 batches takes:21.7 sec
Epoch 2/2... Batch 2529/6332... Discriminator Loss: 1.3516... Generator Loss: 0.7240 This 20 batches takes:21.8 sec
Epoch 2/2... Batch 2549/6332... Discriminator Loss: 1.4323... Generator Loss: 0.7576 This 20 batches takes:21.7 sec
Epoch 2/2... Batch 2569/6332... Discriminator Loss: 1.3130... Generator Loss: 0.6938 This 20 batches takes:21.7 sec
Epoch 2/2... Batch 2589/6332... Discriminator Loss: 1.4776... Generator Loss: 0.7354 This 20 batches takes:21.8 sec
Epoch 2/2... Batch 2609/6332... Discriminator Loss: 1.4078... Generator Loss: 0.7558 This 20 batches takes:21.8 sec
Epoch 2/2... Batch 2629/6332... Discriminator Loss: 1.4358... Generator Loss: 0.9089 This 20 batches takes:21.7 sec
Epoch 2/2... Batch 2649/6332... Discriminator Loss: 1.4104... Generator Loss: 0.7234 This 20 batches takes:21.7 sec
Epoch 2/2... Batch 2669/6332... Discriminator Loss: 1.4062... Generator Loss: 0.6478 This 20 batches takes:21.8 sec
Epoch 2/2... Batch 2689/6332... Discriminator Loss: 1.3406... Generator Loss: 0.8029 This 20 batches takes:21.7 sec
Epoch 2/2... Batch 2709/6332... Discriminator Loss: 1.4354... Generator Loss: 0.8460 This 20 batches takes:21.8 sec
Epoch 2/2... Batch 2729/6332... Discriminator Loss: 1.3802... Generator Loss: 0.8232 This 20 batches takes:21.7 sec
Epoch 2/2... Batch 2749/6332... Discriminator Loss: 1.4318... Generator Loss: 0.6475 This 20 batches takes:21.8 sec
Epoch 2/2... Batch 2769/6332... Discriminator Loss: 1.3014... Generator Loss: 0.8311 This 20 batches takes:21.9 sec
Epoch 2/2... Batch 2789/6332... Discriminator Loss: 1.4832... Generator Loss: 0.7308 This 20 batches takes:21.9 sec
Epoch 2/2... Batch 2809/6332... Discriminator Loss: 1.4897... Generator Loss: 0.6560 This 20 batches takes:21.9 sec
Epoch 2/2... Batch 2829/6332... Discriminator Loss: 1.3528... Generator Loss: 0.8437 This 20 batches takes:21.9 sec
Epoch 2/2... Batch 2849/6332... Discriminator Loss: 1.5192... Generator Loss: 0.6753 This 20 batches takes:21.9 sec
Epoch 2/2... Batch 2869/6332... Discriminator Loss: 1.4050... Generator Loss: 0.7637 This 20 batches takes:21.8 sec
Epoch 2/2... Batch 2889/6332... Discriminator Loss: 1.4428... Generator Loss: 0.5832 This 20 batches takes:23.2 sec
Epoch 2/2... Batch 2909/6332... Discriminator Loss: 1.5174... Generator Loss: 0.7311 This 20 batches takes:23.7 sec
Epoch 2/2... Batch 2929/6332... Discriminator Loss: 1.3031... Generator Loss: 0.6720 This 20 batches takes:25.3 sec
Epoch 2/2... Batch 2949/6332... Discriminator Loss: 1.3083... Generator Loss: 0.8540 This 20 batches takes:24.8 sec
Epoch 2/2... Batch 2969/6332... Discriminator Loss: 1.3661... Generator Loss: 0.7084 This 20 batches takes:24.7 sec
Epoch 2/2... Batch 2989/6332... Discriminator Loss: 1.2920... Generator Loss: 0.8582 This 20 batches takes:24.6 sec
Epoch 2/2... Batch 3009/6332... Discriminator Loss: 1.2828... Generator Loss: 0.8827 This 20 batches takes:24.6 sec
Epoch 2/2... Batch 3029/6332... Discriminator Loss: 1.3508... Generator Loss: 0.7672 This 20 batches takes:25.3 sec
Epoch 2/2... Batch 3049/6332... Discriminator Loss: 1.2476... Generator Loss: 0.7820 This 20 batches takes:25.0 sec
Epoch 2/2... Batch 3069/6332... Discriminator Loss: 1.3615... Generator Loss: 0.7580 This 20 batches takes:25.2 sec
Epoch 2/2... Batch 3089/6332... Discriminator Loss: 1.4998... Generator Loss: 0.7730 This 20 batches takes:24.7 sec
Epoch 2/2... Batch 3109/6332... Discriminator Loss: 1.2692... Generator Loss: 0.6358 This 20 batches takes:24.9 sec
Epoch 2/2... Batch 3129/6332... Discriminator Loss: 1.4583... Generator Loss: 0.6906 This 20 batches takes:24.9 sec
Epoch 2/2... Batch 3149/6332... Discriminator Loss: 1.3122... Generator Loss: 0.5844 This 20 batches takes:24.7 sec
Epoch 2/2... Batch 3169/6332... Discriminator Loss: 1.5679... Generator Loss: 0.5944 This 20 batches takes:24.7 sec
Epoch 2/2... Batch 3189/6332... Discriminator Loss: 1.2536... Generator Loss: 0.7900 This 20 batches takes:24.5 sec
Epoch 2/2... Batch 3209/6332... Discriminator Loss: 1.1898... Generator Loss: 0.8178 This 20 batches takes:24.7 sec
Epoch 2/2... Batch 3229/6332... Discriminator Loss: 1.5367... Generator Loss: 0.6378 This 20 batches takes:24.7 sec
Epoch 2/2... Batch 3249/6332... Discriminator Loss: 1.4703... Generator Loss: 0.6301 This 20 batches takes:24.6 sec
Epoch 2/2... Batch 3269/6332... Discriminator Loss: 1.2236... Generator Loss: 0.7996 This 20 batches takes:24.8 sec
Epoch 2/2... Batch 3289/6332... Discriminator Loss: 1.4866... Generator Loss: 0.6918 This 20 batches takes:25.7 sec
Epoch 2/2... Batch 3309/6332... Discriminator Loss: 1.3307... Generator Loss: 0.7088 This 20 batches takes:24.8 sec
Epoch 2/2... Batch 3329/6332... Discriminator Loss: 1.4237... Generator Loss: 0.7966 This 20 batches takes:24.6 sec
Epoch 2/2... Batch 3349/6332... Discriminator Loss: 1.4541... Generator Loss: 0.6371 This 20 batches takes:24.8 sec
Epoch 2/2... Batch 3369/6332... Discriminator Loss: 1.3167... Generator Loss: 0.7202 This 20 batches takes:24.8 sec
Epoch 2/2... Batch 3389/6332... Discriminator Loss: 1.4939... Generator Loss: 0.7187 This 20 batches takes:24.6 sec
Epoch 2/2... Batch 3409/6332... Discriminator Loss: 1.3088... Generator Loss: 0.6630 This 20 batches takes:24.7 sec
Epoch 2/2... Batch 3429/6332... Discriminator Loss: 1.5698... Generator Loss: 0.5831 This 20 batches takes:24.7 sec
Epoch 2/2... Batch 3449/6332... Discriminator Loss: 1.2899... Generator Loss: 0.7199 This 20 batches takes:24.8 sec
Epoch 2/2... Batch 3469/6332... Discriminator Loss: 1.4416... Generator Loss: 0.6282 This 20 batches takes:24.7 sec
Epoch 2/2... Batch 3489/6332... Discriminator Loss: 1.4839... Generator Loss: 0.5176 This 20 batches takes:24.7 sec
Epoch 2/2... Batch 3509/6332... Discriminator Loss: 1.4333... Generator Loss: 0.8163 This 20 batches takes:24.6 sec
Epoch 2/2... Batch 3529/6332... Discriminator Loss: 1.3782... Generator Loss: 0.6535 This 20 batches takes:24.6 sec
Epoch 2/2... Batch 3549/6332... Discriminator Loss: 1.2850... Generator Loss: 0.6823 This 20 batches takes:24.7 sec
Epoch 2/2... Batch 3569/6332... Discriminator Loss: 1.4791... Generator Loss: 0.6915 This 20 batches takes:24.8 sec
Epoch 2/2... Batch 3589/6332... Discriminator Loss: 1.4915... Generator Loss: 0.7832 This 20 batches takes:24.6 sec
Epoch 2/2... Batch 3609/6332... Discriminator Loss: 1.3076... Generator Loss: 0.8536 This 20 batches takes:24.5 sec
Epoch 2/2... Batch 3629/6332... Discriminator Loss: 1.3594... Generator Loss: 0.6722 This 20 batches takes:24.6 sec
Epoch 2/2... Batch 3649/6332... Discriminator Loss: 1.3195... Generator Loss: 0.6380 This 20 batches takes:24.5 sec
Epoch 2/2... Batch 3669/6332... Discriminator Loss: 1.3929... Generator Loss: 0.8471 This 20 batches takes:24.6 sec
Epoch 2/2... Batch 3689/6332... Discriminator Loss: 1.4663... Generator Loss: 0.9786 This 20 batches takes:25.8 sec
Epoch 2/2... Batch 3709/6332... Discriminator Loss: 1.3653... Generator Loss: 0.7453 This 20 batches takes:24.6 sec
Epoch 2/2... Batch 3729/6332... Discriminator Loss: 1.5065... Generator Loss: 0.7885 This 20 batches takes:24.7 sec
Epoch 2/2... Batch 3749/6332... Discriminator Loss: 1.3047... Generator Loss: 0.9322 This 20 batches takes:24.6 sec
Epoch 2/2... Batch 3769/6332... Discriminator Loss: 1.4178... Generator Loss: 0.7227 This 20 batches takes:24.6 sec
Epoch 2/2... Batch 3789/6332... Discriminator Loss: 1.1782... Generator Loss: 0.9225 This 20 batches takes:24.8 sec
Epoch 2/2... Batch 3809/6332... Discriminator Loss: 1.5443... Generator Loss: 0.5422 This 20 batches takes:24.9 sec
Epoch 2/2... Batch 3829/6332... Discriminator Loss: 1.3615... Generator Loss: 0.8430 This 20 batches takes:25.3 sec
Epoch 2/2... Batch 3849/6332... Discriminator Loss: 1.3028... Generator Loss: 0.7327 This 20 batches takes:24.8 sec
Epoch 2/2... Batch 3869/6332... Discriminator Loss: 1.3304... Generator Loss: 0.5485 This 20 batches takes:24.6 sec
Epoch 2/2... Batch 3889/6332... Discriminator Loss: 1.3277... Generator Loss: 0.8464 This 20 batches takes:25.2 sec
Epoch 2/2... Batch 3909/6332... Discriminator Loss: 1.3430... Generator Loss: 0.6162 This 20 batches takes:24.8 sec
Epoch 2/2... Batch 3929/6332... Discriminator Loss: 1.2747... Generator Loss: 0.6972 This 20 batches takes:24.7 sec
Epoch 2/2... Batch 3949/6332... Discriminator Loss: 1.3218... Generator Loss: 0.7937 This 20 batches takes:24.9 sec
Epoch 2/2... Batch 3969/6332... Discriminator Loss: 1.3471... Generator Loss: 0.6839 This 20 batches takes:24.7 sec
Epoch 2/2... Batch 3989/6332... Discriminator Loss: 1.5061... Generator Loss: 0.7304 This 20 batches takes:25.1 sec
Epoch 2/2... Batch 4009/6332... Discriminator Loss: 1.4152... Generator Loss: 0.7311 This 20 batches takes:24.8 sec
Epoch 2/2... Batch 4029/6332... Discriminator Loss: 1.3351... Generator Loss: 0.7875 This 20 batches takes:24.8 sec
Epoch 2/2... Batch 4049/6332... Discriminator Loss: 1.2789... Generator Loss: 0.8145 This 20 batches takes:24.8 sec
Epoch 2/2... Batch 4069/6332... Discriminator Loss: 1.4359... Generator Loss: 0.6574 This 20 batches takes:24.9 sec
Epoch 2/2... Batch 4089/6332... Discriminator Loss: 1.5088... Generator Loss: 0.5678 This 20 batches takes:26.5 sec
Epoch 2/2... Batch 4109/6332... Discriminator Loss: 1.3410... Generator Loss: 0.7633 This 20 batches takes:25.5 sec
Epoch 2/2... Batch 4129/6332... Discriminator Loss: 1.3660... Generator Loss: 0.6403 This 20 batches takes:24.9 sec
Epoch 2/2... Batch 4149/6332... Discriminator Loss: 1.3850... Generator Loss: 0.7496 This 20 batches takes:25.3 sec
Epoch 2/2... Batch 4169/6332... Discriminator Loss: 1.2996... Generator Loss: 0.7042 This 20 batches takes:25.2 sec
Epoch 2/2... Batch 4189/6332... Discriminator Loss: 1.3558... Generator Loss: 0.8408 This 20 batches takes:24.8 sec
Epoch 2/2... Batch 4209/6332... Discriminator Loss: 1.6201... Generator Loss: 0.7751 This 20 batches takes:24.8 sec
Epoch 2/2... Batch 4229/6332... Discriminator Loss: 1.3679... Generator Loss: 0.8798 This 20 batches takes:24.7 sec
Epoch 2/2... Batch 4249/6332... Discriminator Loss: 1.3051... Generator Loss: 0.5677 This 20 batches takes:24.6 sec
Epoch 2/2... Batch 4269/6332... Discriminator Loss: 1.1689... Generator Loss: 0.9001 This 20 batches takes:24.9 sec
Epoch 2/2... Batch 4289/6332... Discriminator Loss: 1.3731... Generator Loss: 0.8116 This 20 batches takes:24.9 sec
Epoch 2/2... Batch 4309/6332... Discriminator Loss: 1.4943... Generator Loss: 0.8193 This 20 batches takes:24.8 sec
Epoch 2/2... Batch 4329/6332... Discriminator Loss: 1.3629... Generator Loss: 0.6444 This 20 batches takes:25.0 sec
Epoch 2/2... Batch 4349/6332... Discriminator Loss: 1.3542... Generator Loss: 0.8512 This 20 batches takes:25.2 sec
Epoch 2/2... Batch 4369/6332... Discriminator Loss: 1.3185... Generator Loss: 0.7668 This 20 batches takes:25.0 sec
Epoch 2/2... Batch 4389/6332... Discriminator Loss: 1.5536... Generator Loss: 0.7601 This 20 batches takes:24.9 sec
Epoch 2/2... Batch 4409/6332... Discriminator Loss: 1.3568... Generator Loss: 0.7841 This 20 batches takes:24.9 sec
Epoch 2/2... Batch 4429/6332... Discriminator Loss: 1.3977... Generator Loss: 0.7477 This 20 batches takes:24.9 sec
Epoch 2/2... Batch 4449/6332... Discriminator Loss: 1.4492... Generator Loss: 0.6899 This 20 batches takes:24.8 sec
Epoch 2/2... Batch 4469/6332... Discriminator Loss: 1.2431... Generator Loss: 0.7435 This 20 batches takes:24.8 sec
Epoch 2/2... Batch 4489/6332... Discriminator Loss: 1.5500... Generator Loss: 0.6532 This 20 batches takes:25.7 sec
Epoch 2/2... Batch 4509/6332... Discriminator Loss: 1.3509... Generator Loss: 0.8004 This 20 batches takes:24.8 sec
Epoch 2/2... Batch 4529/6332... Discriminator Loss: 1.3209... Generator Loss: 0.7356 This 20 batches takes:24.6 sec
Epoch 2/2... Batch 4549/6332... Discriminator Loss: 1.2955... Generator Loss: 0.7959 This 20 batches takes:24.6 sec
Epoch 2/2... Batch 4569/6332... Discriminator Loss: 1.3481... Generator Loss: 0.8967 This 20 batches takes:24.7 sec
Epoch 2/2... Batch 4589/6332... Discriminator Loss: 1.3475... Generator Loss: 0.6963 This 20 batches takes:24.6 sec
Epoch 2/2... Batch 4609/6332... Discriminator Loss: 1.4462... Generator Loss: 0.7878 This 20 batches takes:24.7 sec
Epoch 2/2... Batch 4629/6332... Discriminator Loss: 1.3579... Generator Loss: 0.9403 This 20 batches takes:24.9 sec
Epoch 2/2... Batch 4649/6332... Discriminator Loss: 1.4306... Generator Loss: 0.6878 This 20 batches takes:24.8 sec
Epoch 2/2... Batch 4669/6332... Discriminator Loss: 1.3301... Generator Loss: 0.7508 This 20 batches takes:24.8 sec
Epoch 2/2... Batch 4689/6332... Discriminator Loss: 1.3413... Generator Loss: 0.6675 This 20 batches takes:24.8 sec
Epoch 2/2... Batch 4709/6332... Discriminator Loss: 1.4127... Generator Loss: 0.7473 This 20 batches takes:24.6 sec
Epoch 2/2... Batch 4729/6332... Discriminator Loss: 1.4359... Generator Loss: 0.7067 This 20 batches takes:24.7 sec
Epoch 2/2... Batch 4749/6332... Discriminator Loss: 1.5021... Generator Loss: 0.8428 This 20 batches takes:24.6 sec
Epoch 2/2... Batch 4769/6332... Discriminator Loss: 1.5156... Generator Loss: 0.6837 This 20 batches takes:24.5 sec
Epoch 2/2... Batch 4789/6332... Discriminator Loss: 1.3628... Generator Loss: 0.7609 This 20 batches takes:24.8 sec
Epoch 2/2... Batch 4809/6332... Discriminator Loss: 1.5217... Generator Loss: 0.7398 This 20 batches takes:24.6 sec
Epoch 2/2... Batch 4829/6332... Discriminator Loss: 1.3548... Generator Loss: 0.8116 This 20 batches takes:24.6 sec
Epoch 2/2... Batch 4849/6332... Discriminator Loss: 1.2732... Generator Loss: 0.8639 This 20 batches takes:24.7 sec
Epoch 2/2... Batch 4869/6332... Discriminator Loss: 1.4492... Generator Loss: 0.6182 This 20 batches takes:24.6 sec
Epoch 2/2... Batch 4889/6332... Discriminator Loss: 1.5458... Generator Loss: 0.6724 This 20 batches takes:26.1 sec
Epoch 2/2... Batch 4909/6332... Discriminator Loss: 1.4322... Generator Loss: 0.8138 This 20 batches takes:24.9 sec
Epoch 2/2... Batch 4929/6332... Discriminator Loss: 1.2102... Generator Loss: 0.6454 This 20 batches takes:24.6 sec
Epoch 2/2... Batch 4949/6332... Discriminator Loss: 1.3841... Generator Loss: 0.7053 This 20 batches takes:24.8 sec
Epoch 2/2... Batch 4969/6332... Discriminator Loss: 1.2745... Generator Loss: 0.6905 This 20 batches takes:24.5 sec
Epoch 2/2... Batch 4989/6332... Discriminator Loss: 1.8006... Generator Loss: 0.5414 This 20 batches takes:25.2 sec
Epoch 2/2... Batch 5009/6332... Discriminator Loss: 1.3622... Generator Loss: 0.9480 This 20 batches takes:24.9 sec
Epoch 2/2... Batch 5029/6332... Discriminator Loss: 1.4243... Generator Loss: 0.6358 This 20 batches takes:24.6 sec
Epoch 2/2... Batch 5049/6332... Discriminator Loss: 1.3992... Generator Loss: 0.7448 This 20 batches takes:24.8 sec
Epoch 2/2... Batch 5069/6332... Discriminator Loss: 1.2840... Generator Loss: 0.7098 This 20 batches takes:24.6 sec
Epoch 2/2... Batch 5089/6332... Discriminator Loss: 1.3217... Generator Loss: 0.7566 This 20 batches takes:24.6 sec
Epoch 2/2... Batch 5109/6332... Discriminator Loss: 1.2806... Generator Loss: 0.8053 This 20 batches takes:24.9 sec
Epoch 2/2... Batch 5129/6332... Discriminator Loss: 1.4764... Generator Loss: 0.7020 This 20 batches takes:24.5 sec
Epoch 2/2... Batch 5149/6332... Discriminator Loss: 1.1463... Generator Loss: 1.0545 This 20 batches takes:24.8 sec
Epoch 2/2... Batch 5169/6332... Discriminator Loss: 1.3638... Generator Loss: 1.0772 This 20 batches takes:24.8 sec
Epoch 2/2... Batch 5189/6332... Discriminator Loss: 1.4265... Generator Loss: 0.4835 This 20 batches takes:24.6 sec
Epoch 2/2... Batch 5209/6332... Discriminator Loss: 1.5318... Generator Loss: 0.8077 This 20 batches takes:24.8 sec
Epoch 2/2... Batch 5229/6332... Discriminator Loss: 1.3158... Generator Loss: 1.1872 This 20 batches takes:24.7 sec
Epoch 2/2... Batch 5249/6332... Discriminator Loss: 1.4624... Generator Loss: 0.5948 This 20 batches takes:24.7 sec
Epoch 2/2... Batch 5269/6332... Discriminator Loss: 1.3483... Generator Loss: 0.7816 This 20 batches takes:25.4 sec
Epoch 2/2... Batch 5289/6332... Discriminator Loss: 1.1799... Generator Loss: 0.7314 This 20 batches takes:25.7 sec
Epoch 2/2... Batch 5309/6332... Discriminator Loss: 1.2321... Generator Loss: 0.7677 This 20 batches takes:24.7 sec
Epoch 2/2... Batch 5329/6332... Discriminator Loss: 1.2980... Generator Loss: 0.7902 This 20 batches takes:24.6 sec
Epoch 2/2... Batch 5349/6332... Discriminator Loss: 1.4434... Generator Loss: 0.8816 This 20 batches takes:24.7 sec
Epoch 2/2... Batch 5369/6332... Discriminator Loss: 1.4996... Generator Loss: 0.7487 This 20 batches takes:24.9 sec
Epoch 2/2... Batch 5389/6332... Discriminator Loss: 1.7206... Generator Loss: 0.5469 This 20 batches takes:24.7 sec
Epoch 2/2... Batch 5409/6332... Discriminator Loss: 1.2187... Generator Loss: 0.7482 This 20 batches takes:24.7 sec
Epoch 2/2... Batch 5429/6332... Discriminator Loss: 1.3837... Generator Loss: 0.9696 This 20 batches takes:24.9 sec
Epoch 2/2... Batch 5449/6332... Discriminator Loss: 1.2928... Generator Loss: 0.7808 This 20 batches takes:24.6 sec
Epoch 2/2... Batch 5469/6332... Discriminator Loss: 1.2728... Generator Loss: 0.7095 This 20 batches takes:26.2 sec
Epoch 2/2... Batch 5489/6332... Discriminator Loss: 1.4173... Generator Loss: 0.8309 This 20 batches takes:24.8 sec
Epoch 2/2... Batch 5509/6332... Discriminator Loss: 1.3250... Generator Loss: 0.8699 This 20 batches takes:24.9 sec
Epoch 2/2... Batch 5529/6332... Discriminator Loss: 1.3392... Generator Loss: 0.8562 This 20 batches takes:25.1 sec
Epoch 2/2... Batch 5549/6332... Discriminator Loss: 1.3377... Generator Loss: 0.8728 This 20 batches takes:24.7 sec
Epoch 2/2... Batch 5569/6332... Discriminator Loss: 1.3158... Generator Loss: 0.9492 This 20 batches takes:24.7 sec
Epoch 2/2... Batch 5589/6332... Discriminator Loss: 1.3564... Generator Loss: 0.7713 This 20 batches takes:24.8 sec
Epoch 2/2... Batch 5609/6332... Discriminator Loss: 1.2442... Generator Loss: 1.0600 This 20 batches takes:24.7 sec
Epoch 2/2... Batch 5629/6332... Discriminator Loss: 1.4515... Generator Loss: 0.8752 This 20 batches takes:24.8 sec
Epoch 2/2... Batch 5649/6332... Discriminator Loss: 1.4087... Generator Loss: 0.7598 This 20 batches takes:24.9 sec
Epoch 2/2... Batch 5669/6332... Discriminator Loss: 1.4869... Generator Loss: 0.7858 This 20 batches takes:24.8 sec
Epoch 2/2... Batch 5689/6332... Discriminator Loss: 1.2734... Generator Loss: 0.8102 This 20 batches takes:26.0 sec
Epoch 2/2... Batch 5709/6332... Discriminator Loss: 1.2781... Generator Loss: 0.7197 This 20 batches takes:25.0 sec
Epoch 2/2... Batch 5729/6332... Discriminator Loss: 1.1795... Generator Loss: 0.7490 This 20 batches takes:24.9 sec
Epoch 2/2... Batch 5749/6332... Discriminator Loss: 1.1945... Generator Loss: 0.8565 This 20 batches takes:24.7 sec
Epoch 2/2... Batch 5769/6332... Discriminator Loss: 1.2738... Generator Loss: 0.7023 This 20 batches takes:24.6 sec
Epoch 2/2... Batch 5789/6332... Discriminator Loss: 1.1643... Generator Loss: 0.7200 This 20 batches takes:24.7 sec
Epoch 2/2... Batch 5809/6332... Discriminator Loss: 1.2565... Generator Loss: 0.7182 This 20 batches takes:24.6 sec
Epoch 2/2... Batch 5829/6332... Discriminator Loss: 1.3782... Generator Loss: 0.7208 This 20 batches takes:24.6 sec
Epoch 2/2... Batch 5849/6332... Discriminator Loss: 1.2672... Generator Loss: 0.6653 This 20 batches takes:24.8 sec
Epoch 2/2... Batch 5869/6332... Discriminator Loss: 1.2793... Generator Loss: 0.9221 This 20 batches takes:24.7 sec
Epoch 2/2... Batch 5889/6332... Discriminator Loss: 1.3452... Generator Loss: 0.7425 This 20 batches takes:24.8 sec
Epoch 2/2... Batch 5909/6332... Discriminator Loss: 1.3103... Generator Loss: 0.7907 This 20 batches takes:24.7 sec
Epoch 2/2... Batch 5929/6332... Discriminator Loss: 1.4127... Generator Loss: 0.8281 This 20 batches takes:24.7 sec
Epoch 2/2... Batch 5949/6332... Discriminator Loss: 1.4485... Generator Loss: 0.5405 This 20 batches takes:24.8 sec
Epoch 2/2... Batch 5969/6332... Discriminator Loss: 1.5341... Generator Loss: 0.5147 This 20 batches takes:24.7 sec
Epoch 2/2... Batch 5989/6332... Discriminator Loss: 1.3352... Generator Loss: 0.9075 This 20 batches takes:24.6 sec
Epoch 2/2... Batch 6009/6332... Discriminator Loss: 1.3711... Generator Loss: 0.7825 This 20 batches takes:24.8 sec
Epoch 2/2... Batch 6029/6332... Discriminator Loss: 1.3537... Generator Loss: 0.8927 This 20 batches takes:24.6 sec
Epoch 2/2... Batch 6049/6332... Discriminator Loss: 1.3354... Generator Loss: 0.8121 This 20 batches takes:24.7 sec
Epoch 2/2... Batch 6069/6332... Discriminator Loss: 1.3772... Generator Loss: 1.0957 This 20 batches takes:24.6 sec
Epoch 2/2... Batch 6089/6332... Discriminator Loss: 1.4166... Generator Loss: 0.6191 This 20 batches takes:25.8 sec
Epoch 2/2... Batch 6109/6332... Discriminator Loss: 1.3620... Generator Loss: 0.8405 This 20 batches takes:24.8 sec
Epoch 2/2... Batch 6129/6332... Discriminator Loss: 1.4090... Generator Loss: 0.8234 This 20 batches takes:24.7 sec
Epoch 2/2... Batch 6149/6332... Discriminator Loss: 1.2128... Generator Loss: 0.8374 This 20 batches takes:24.7 sec
Epoch 2/2... Batch 6169/6332... Discriminator Loss: 1.3329... Generator Loss: 0.6843 This 20 batches takes:24.6 sec
Epoch 2/2... Batch 6189/6332... Discriminator Loss: 1.4556... Generator Loss: 0.6949 This 20 batches takes:24.6 sec
Epoch 2/2... Batch 6209/6332... Discriminator Loss: 1.1553... Generator Loss: 0.9814 This 20 batches takes:24.8 sec
Epoch 2/2... Batch 6229/6332... Discriminator Loss: 1.2592... Generator Loss: 0.7508 This 20 batches takes:24.6 sec
Epoch 2/2... Batch 6249/6332... Discriminator Loss: 1.4362... Generator Loss: 0.6336 This 20 batches takes:24.6 sec
Epoch 2/2... Batch 6269/6332... Discriminator Loss: 1.3257... Generator Loss: 0.7668 This 20 batches takes:24.7 sec
Epoch 2/2... Batch 6289/6332... Discriminator Loss: 1.5339... Generator Loss: 0.7955 This 20 batches takes:24.7 sec
Epoch 2/2... Batch 6309/6332... Discriminator Loss: 1.4335... Generator Loss: 0.7091 This 20 batches takes:24.7 sec
Epoch 2/2... Batch 6329/6332... Discriminator Loss: 1.3408... Generator Loss: 0.7985 This 20 batches takes:24.8 sec

Submitting This Project

When submitting this project, make sure to run all the cells before saving the notebook. Save the notebook file as "dlnd_face_generation.ipynb" and save it as a HTML file under "File" -> "Download as". Include the "helper.py" and "problem_unittests.py" files in your submission.