In [1]:
## imports,
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import models.imports.features
sns.set()
In [2]:
## load in features df.
trainsf_ = r'../data/text/bitcoin/train_set.csv'
train_set = models.imports.features.import_file(trainsf_)
train_set_x, train_set_y = models.imports.features.scale_and_transform_into_datasets(train_set)
In [3]:
## train features,
train_set_x.plot(alpha=.5)
Out[3]:
In [4]:
## output features,
train_set_y.plot()
Out[4]:
In [5]:
from sklearn import linear_model
In [6]:
model = linear_model.LinearRegression()
model.fit(train_set_x, train_set_y)
prediction = model.predict(train_set_x)
mse = models.imports.features.mse(train_set_y, prediction)
print('mse:', mse)
In [7]:
plt.plot(model.predict(train_set_x), 'ro', markersize=1)
plt.plot(train_set_y, 'b', alpha=.3)
plt.show()
In [8]:
## test,
testsf_ = r'../data/text/bitcoin/test_set.csv'
test_set = models.imports.features.import_file(testsf_)
test_set_x, test_set_y = models.imports.features.scale_and_transform_into_datasets(test_set)
In [9]:
## mean squared error,
test_prediction = model.predict(test_set_x)
mse_test = models.imports.features.mse(test_set_y, test_prediction)
print('mse:', mse_test)
In [10]:
plt.plot(model.predict(test_set_x), 'ro', markersize=1)
plt.plot(test_set_y, 'b', alpha=.3)
plt.show()
In [ ]: