In [1]:
## imports,
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

import models.imports.features

sns.set()

In [2]:
## load in features df.

trainsf_ = r'../data/text/bitcoin/train_set.csv'
train_set = models.imports.features.import_file(trainsf_)
train_set_x, train_set_y = models.imports.features.scale_and_transform_into_datasets(train_set)

In [3]:
## train features,

train_set_x.plot(alpha=.5)


Out[3]:
<matplotlib.axes._subplots.AxesSubplot at 0x2d17b970630>

In [4]:
## output features,

train_set_y.plot()


Out[4]:
<matplotlib.axes._subplots.AxesSubplot at 0x2d17bae8710>

In [5]:
from sklearn import linear_model

In [6]:
model = linear_model.LinearRegression()
model.fit(train_set_x, train_set_y)

prediction = model.predict(train_set_x)
mse = models.imports.features.mse(train_set_y, prediction)
print('mse:', mse)


mse: price    0.006382
dtype: float64

In [7]:
plt.plot(model.predict(train_set_x), 'ro', markersize=1)
plt.plot(train_set_y, 'b', alpha=.3)
plt.show()



In [8]:
## test,

testsf_ = r'../data/text/bitcoin/test_set.csv'
test_set = models.imports.features.import_file(testsf_)
test_set_x, test_set_y = models.imports.features.scale_and_transform_into_datasets(test_set)

In [9]:
## mean squared error,
test_prediction = model.predict(test_set_x)
mse_test = models.imports.features.mse(test_set_y, test_prediction)
print('mse:', mse_test)


mse: price    0.01199
dtype: float64

In [10]:
plt.plot(model.predict(test_set_x), 'ro', markersize=1)
plt.plot(test_set_y, 'b', alpha=.3)
plt.show()



In [ ]: