In [3]:
import os
In [7]:
cmd = '''mkdir tf_files && \
cd tf_files && \
curl -O http://download.tensorflow.org/example_images/flower_photos.tgz && \
tar xzf flower_photos.tgz && \
rm flower_photos.tgz && \
cd ..'''
os.system(cmd)
Out[7]:
In [8]:
cmd = '''cd ../tensorflow && \
python tensorflow/examples/image_retraining/retrain.py \
--bottleneck_dir=../ml-notebooks/tf_files/bottlenecks \
--how_many_training_steps 500 \
--model_dir=../ml-notebooks/tf_files/inception \
--output_graph=../ml-notebooks/tf_files/retrained_graph.pb \
--output_labels=../ml-notebooks/tf_files/retrained_labels.txt \
--image_dir ../ml-notebooks/tf_files/flower_photos'''
os.system(cmd)
Out[8]:
In [9]:
image_path = "rose.jpg"
from IPython.display import Image
Image(filename=image_path)
Out[9]:
Now load the image into tensorflow, load the model of the network into tensorflow, predict the labels and print the predicted labels.
In [10]:
import tensorflow as tf
# Read in the image_data
image_data = tf.gfile.FastGFile(image_path, 'rb').read()
# Loads label file, strips off carriage return
label_lines = [line.rstrip() for line
in tf.gfile.GFile("tf_files/retrained_labels.txt")]
# Unpersists graph from file
with tf.gfile.FastGFile("tf_files/retrained_graph.pb", 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
_ = tf.import_graph_def(graph_def, name='')
with tf.Session() as sess:
# Feed the image_data as input to the graph and get first prediction
softmax_tensor = sess.graph.get_tensor_by_name('final_result:0')
predictions = sess.run(softmax_tensor, \
{'DecodeJpeg/contents:0': image_data})
# Sort to show labels of first prediction in order of confidence
top_k = predictions[0].argsort()[-len(predictions[0]):][::-1]
for node_id in top_k:
human_string = label_lines[node_id]
score = predictions[0][node_id]
print('%s (score = %.5f)' % (human_string, score))
Yay, it seems to be a rose.
In [ ]: