In [1]:
# import numpy as np

# # !/usr/bin/env python3
# # -*- coding: utf-8 -*-
# """
# Created on 20181219

# @author: zhangji

# Trajection of a ellipse, Jeffery equation. 
# """

# %pylab inline
# pylab.rcParams['figure.figsize'] = (25, 11)
# fontsize = 40

# import numpy as np
# import scipy as sp
# from scipy.optimize import leastsq, curve_fit
# from scipy import interpolate
# from scipy.interpolate import interp1d
# from scipy.io import loadmat, savemat
# # import scipy.misc

# import matplotlib
# from matplotlib import pyplot as plt
# from matplotlib import animation, rc
# import matplotlib.ticker as mtick
# from mpl_toolkits.axes_grid1.inset_locator import inset_axes, zoomed_inset_axes
# from mpl_toolkits.mplot3d import Axes3D, axes3d

# from sympy import symbols, simplify, series, exp
# from sympy.matrices import Matrix
# from sympy.solvers import solve

# from IPython.display import display, HTML
# from tqdm import tqdm_notebook as tqdm
# import pandas as pd
# import re
# from scanf import scanf
# import os
# import glob

# from codeStore import support_fun as spf
# from src.support_class import *
# from src import stokes_flow as sf

# rc('animation', html='html5')
# PWD = os.getcwd()
# font = {'size': 20}
# matplotlib.rc('font', **font)
# np.set_printoptions(linewidth=90, precision=5)

%load_ext autoreload
%autoreload 2

from tqdm.notebook import tqdm as tqdm_notebook
import os
import glob
import natsort 
import numpy as np
import scipy as sp
from scipy.optimize import leastsq, curve_fit
from scipy import interpolate, integrate
from scipy import spatial, signal
# from scipy.interpolate import interp1d
from scipy.io import loadmat, savemat
# import scipy.misc
import importlib
from IPython.display import display, HTML
import pandas as pd
import pickle
import re
from scanf import scanf

import matplotlib
# matplotlib.use('agg')
from matplotlib import pyplot as plt
import matplotlib.colors as colors
from matplotlib import animation, rc
import matplotlib.ticker as mtick
from mpl_toolkits.axes_grid1.inset_locator import inset_axes, zoomed_inset_axes
from mpl_toolkits.mplot3d import Axes3D, axes3d
from mpl_toolkits.axes_grid1.axes_divider import make_axes_locatable
from mpl_toolkits.mplot3d.art3d import Line3DCollection
from matplotlib import cm

from tqdm import tqdm, tqdm_notebook
from time import time
from src.support_class import *
from src import jeffery_model as jm
from codeStore import support_fun as spf
from codeStore import support_fun_table as spf_tb

# %matplotlib notebook
%matplotlib inline
rc('animation', html='html5')
fontsize = 40
PWD = os.getcwd()

In [2]:
fig = plt.figure(figsize=(2, 2))
fig.patch.set_facecolor('white')
ax0 = fig.add_subplot(1, 1, 1)



In [3]:
job_dir = 'ecoC01B05_wt0.9_psi-0a'
table_name = 'ecoC01B05_tao1_wm0.9'

In [4]:
# show phase map of theta-phi, load date
importlib.reload(spf_tb)

t_headle = '(.*?).pickle'
t_path = os.listdir(os.path.join(PWD, job_dir))
filename_list = [filename for filename in os.listdir(os.path.join(PWD, job_dir)) 
                 if re.match(t_headle, filename) is not None]
ini_theta_list = []
ini_phi_list = []
lst_eta_list = []
theta_max_fre_list = []
phi_max_fre_list = []
psi_max_fre_list = []
eta_max_fre_list = []
pickle_path_list = []
idx_list = []
for i0, tname in enumerate(tqdm_notebook(filename_list[:])):
    tpath = os.path.join(PWD, job_dir, tname)
    with open(tpath, 'rb') as handle:
        tpick = pickle.load(handle)
    ini_theta_list.append(tpick['ini_theta'])
    ini_phi_list.append(tpick['ini_phi'])
    lst_eta_list.append(tpick['Table_eta'][-1])
    pickle_path_list.append(tpath)
    idx_list.append(i0)
    
    # fft rule
    tx = tpick['Table_t']
    tmin = np.max((0, tx.max() - 1000))
    idx = tx > tmin    
    freq_pk = spf_tb.get_major_fre(tx[idx], tpick['Table_theta'][idx])
    idx = tx > (tx.max() - 1 / freq_pk * 10)
    theta_max_fre_list.append(spf_tb.get_major_fre(tx[idx], tpick['Table_theta'][idx]))
    phi_max_fre_list.append(spf_tb.get_major_fre(tx[idx], tpick['Table_phi'][idx]))
    psi_max_fre_list.append(spf_tb.get_major_fre(tx[idx], tpick['Table_psi'][idx]))
    eta_max_fre_list.append(spf_tb.get_major_fre(tx[idx], tpick['Table_eta'][idx]))

data0 = pd.DataFrame({'ini_theta': np.around(ini_theta_list, 3), 
                 'ini_phi': np.around(ini_phi_list, 3), 
                 'lst_eta': np.around(lst_eta_list, 3), 
                 'theta_max_fre': theta_max_fre_list, 
                 'phi_max_fre': phi_max_fre_list, 
                 'psi_max_fre': psi_max_fre_list, 
                 'eta_max_fre': eta_max_fre_list, 
                 'data_idx': idx_list })
data = data0.pivot_table(index=['ini_theta'], columns=['ini_phi'])
lst_eta = data.lst_eta
theta_max_fre = data.theta_max_fre
phi_max_fre = data.phi_max_fre
psi_max_fre = data.psi_max_fre
eta_max_fre = data.eta_max_fre
data_idx = data.data_idx.fillna(-1).astype(int)


/anaconda3/envs/py35/lib/python3.5/site-packages/ipykernel_launcher.py:17: TqdmDeprecationWarning: This function will be removed in tqdm==5.0.0
Please use `tqdm.notebook.tqdm` instead of `tqdm.tqdm_notebook`


In [5]:
# check if the 3D parameter space is been traversed or not 
do_check = False
if do_check:
    t_headle = '(.*?).pickle'
    t_path = os.listdir(os.path.join(PWD, job_dir))
    filename_list = [filename for filename in os.listdir(os.path.join(PWD, job_dir)) 
                     if re.match(t_headle, filename) is not None]
    ttheta = []
    tphi = []
    tpsi = []
    for i0, tname in enumerate(tqdm_notebook(filename_list[:])):
        tpath = os.path.join(PWD, job_dir, tname)
        with open(tpath, 'rb') as handle:
            tpick = pickle.load(handle)
        ttheta.append(tpick['Table_theta'])
        tphi.append(tpick['Table_phi'])
        tpsi.append(tpick['Table_psi'])

    ttheta, tphi, tpsi = np.hstack(ttheta), np.hstack(tphi), np.hstack(tpsi)
    from evtk.hl import pointsToVTK
    vtu_name = '/home/zhangji/check_th_ph_ps_%s' % job_dir
    pointsToVTK(vtu_name, 
                ttheta, tphi, tpsi, 
                data={'th_ph_ps': ttheta})
    print('save theta_phi_psi infomation to %s' % vtu_name)

In [6]:
# sort phase map of theta-phi using the name beging with pick frequience
importlib.reload(spf_tb)
do_sort = True

if do_sort:
    # clear dir
    dirpath = os.path.join(PWD, job_dir, 'th_ph_fft')
    if os.path.exists(dirpath) and os.path.isdir(dirpath):
        import shutil
        shutil.rmtree(dirpath)
        print('remove folder %s' % dirpath)
    os.makedirs(dirpath)
    print('make folder %s' % dirpath)

    for tname in tqdm_notebook(filename_list[:]):
        tpath = os.path.join(PWD, job_dir, tname)
        with open(tpath, 'rb') as handle:
            tpick = pickle.load(handle)
        Table_t = tpick['Table_t']
        Table_dt = tpick['Table_dt']
        Table_X = tpick['Table_X']
        Table_P = tpick['Table_P']
        Table_P2 = tpick['Table_P2']
        Table_theta = tpick['Table_theta']
        Table_phi = tpick['Table_phi']
        Table_psi = tpick['Table_psi']
        Table_eta = tpick['Table_eta']

        tmin = np.max((0, Table_t.max() - 1000))
        idx = Table_t > tmin    
        freq_pk = spf_tb.get_major_fre(Table_t[idx], Table_theta[idx])
        idx = Table_t > (Table_t.max() - 1 / freq_pk * 10)
        freq_pk = spf_tb.get_major_fre(Table_t[idx], Table_theta[idx])
        save_name = 'fre%.5f_%s.jpg' % (freq_pk, os.path.splitext(os.path.basename(tname))[0])
        fig = spf_tb.light_save_theta_phi(os.path.join(dirpath, save_name), 
                                    Table_t[idx], Table_dt[idx], Table_X[idx], Table_P[idx], Table_P2[idx], 
                                    Table_theta[idx], Table_phi[idx], Table_psi[idx], Table_eta[idx])
        plt.close(fig)


make folder /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/ecoC01B05_wt0.9_psi-0a/th_ph_fft
/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:15: TqdmDeprecationWarning: This function will be removed in tqdm==5.0.0
Please use `tqdm.notebook.tqdm` instead of `tqdm.tqdm_notebook`
  from ipykernel import kernelapp as app


In [7]:
importlib.reload(spf_tb)
theta, phi = 0, 0

tpick, _ = spf_tb.load_table_date_pickle(job_dir, theta, phi)
Table_t = tpick['Table_t']
Table_dt = tpick['Table_dt']
Table_X = tpick['Table_X']
Table_P = tpick['Table_P']
Table_P2 = tpick['Table_P2']
Table_theta = tpick['Table_theta']
Table_phi = tpick['Table_phi']
Table_psi = tpick['Table_psi']
Table_eta = tpick['Table_eta']
print('-ini_theta %f -ini_phi %f -ini_psi %f' % 
      (tpick['Table_theta'][0], tpick['Table_phi'][0], tpick['Table_psi'][0]))

freq_pk = spf_tb.get_major_fre(Table_t, Table_theta)
idx = Table_t > Table_t.max() - 1 / freq_pk * 10
# spf_tb.show_table_result(Table_t[idx], Table_dt[idx], Table_X[idx], Table_P[idx], Table_P2[idx], 
#                          Table_theta[idx], Table_phi[idx], Table_psi[idx], Table_eta[idx], save_every)
spf_tb.show_theta_phi(Table_t[idx], Table_dt[idx], Table_X[idx], Table_P[idx], Table_P2[idx], 
                      Table_theta[idx], Table_phi[idx], Table_psi[idx], Table_eta[idx])
spf_tb.show_theta_phi_psi_eta(Table_t[idx], Table_dt[idx], Table_X[idx], Table_P[idx], Table_P2[idx], 
                              Table_theta[idx], Table_phi[idx], Table_psi[idx], Table_eta[idx])
spf_tb.show_center_X(Table_t[idx], Table_dt[idx], Table_X[idx], Table_P[idx], Table_P2[idx], 
                     Table_theta[idx], Table_phi[idx], Table_psi[idx], Table_eta[idx], 
                     table_name=table_name)


-ini_theta 0.000000 -ini_phi 0.000000 -ini_psi 0.000000
/home/zhangji/stokes_flow_master/codeStore/support_fun_table.py:615: UserWarning: This figure includes Axes that are not compatible with tight_layout, so results might be incorrect.
  plt.tight_layout()
Out[7]:
True

In [8]:
with pd.option_context('display.max_rows', 100, 'display.max_columns', 100):
    display(data.theta_max_fre)


ini_phi 0.000 0.143 0.286 0.428 0.571 0.714 0.857 1.000 1.142 1.285 1.428 1.571 1.714 1.856 1.999 2.142 2.285 2.428 2.570 2.713 2.856 2.999 3.142 3.284 3.427 3.570 3.713 3.856 3.998 4.141 4.284 4.427 4.570 4.712 4.855 4.998 5.141 5.284 5.426 5.569 5.712 5.855 5.998 6.140 6.283
ini_theta
0.000 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999
0.143 0.014998 0.015000 0.014999 0.014998 0.014999 0.014999 0.014999 0.014998 0.014999 0.014999 0.014999 0.014999 0.015000 0.015000 0.014998 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014998 0.014999 0.014999 0.014999 0.014999 0.014998 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014998 0.014999 0.015000 0.014999 0.014998 0.014999 0.014999 0.014998 0.014998
0.286 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.015000 0.014999 0.014999 0.014998 0.015000 0.014999 0.014999 0.015000 0.014999 0.015000 0.014999 0.014998 0.014999 0.014998 0.015000 0.015000 0.015000 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.015000 0.014999 0.014998 0.014999 0.015000 0.014999 0.014999 0.014999
0.428 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.015000 0.015000 0.014999 0.014999 0.015000 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.015000 0.014999 0.014999 0.014999 0.014999 0.015000 0.014999 0.014998 0.014999 0.014998 0.014999 0.014999 0.015000 0.014999 0.014999 0.015000 0.015000 0.014999 0.015000 0.014999 0.015000 0.014999 0.014999
0.571 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014998 0.015000 0.014998 0.014999 0.015000 0.014999 0.014999 0.014998 0.015000 0.014999 0.015000 0.014999 0.014999 0.014999 0.014999 0.015000 0.015000 0.014999 0.014999 0.014999 0.015000 0.014998 0.015000 0.014999 0.014999 0.014998 0.014999 0.014999
0.714 0.014998 0.014998 0.014999 0.014999 0.014999 0.014999 0.014999 0.015000 0.014999 0.014999 0.014999 0.014999 0.014999 0.014998 0.015000 0.014999 0.014999 0.014999 0.014999 0.014999 0.015000 0.014999 0.014998 0.014999 0.014999 0.014999 0.015000 0.014999 0.014999 0.014999 0.015000 0.015000 0.015000 0.014999 0.014998 0.015000 0.014999 0.014998 0.014999 0.014999 0.014999 0.014999 0.015000 0.014999 0.014998
0.857 0.014999 0.014998 0.014999 0.014999 0.014999 0.015000 0.014998 0.014999 0.014999 0.014999 0.014999 0.015000 0.015000 0.015000 0.014999 0.014999 0.014999 0.014999 0.015000 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014998 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.015000 0.014999 0.014999 0.014998 0.014999 0.015000 0.014999 0.014999 0.014999 0.014999 0.014999
1.000 0.014998 0.014999 0.014998 0.014999 0.014999 0.014999 0.014999 0.014999 0.014998 0.014999 0.014999 0.014998 0.014999 0.015000 0.014999 0.015000 0.014999 0.014999 0.014998 0.014999 0.014999 0.015000 0.015000 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.015000 0.014999 0.015000 0.015000 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.015000 0.014999 0.015000 0.014999 0.014998
1.142 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014998 0.014999 0.015000 0.014999 0.014999 0.015000 0.014998 0.014999 0.014999 0.014999 0.014999 0.014999 0.014998 0.015000 0.014999 0.014999 0.014999 0.014999 0.015000 0.015000 0.014999 0.014999 0.015000 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.015000 0.014999 0.014999 0.014999
1.285 0.014999 0.014999 0.015000 0.015000 0.014999 0.014999 0.014999 0.015000 0.015000 0.015000 0.015000 0.014998 0.015000 0.014999 0.014998 0.014998 0.014999 0.014999 0.014999 0.015000 0.014999 0.014999 0.015000 0.014999 0.014999 0.015000 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014998 0.015000 0.014999 0.014999 0.014998 0.014999 0.014998 0.014999 0.014999 0.014999
1.428 0.014999 0.014999 0.015000 0.015000 0.014999 0.014999 0.014999 0.015000 0.014999 0.014999 0.015000 0.014998 0.014999 0.014998 0.015000 0.014999 0.014999 0.015000 0.014999 0.014999 0.014999 0.014999 0.014999 0.015000 0.014999 0.014999 0.014999 0.014999 0.014999 0.014998 0.014999 0.015000 0.014999 0.014999 0.014999 0.014999 0.015000 0.014999 0.014999 0.014999 0.014999 0.014999 0.015000 0.014998 0.014999
1.571 0.014999 0.014999 0.014999 0.015000 0.015000 0.014999 0.015000 0.014999 0.014998 0.014999 0.020378 0.104447 0.021873 0.015764 0.015000 0.014999 0.014999 0.014999 0.014999 0.014999 0.015000 0.014999 0.015000 0.014998 0.014998 0.015000 0.014998 0.014999 0.014999 0.014999 0.015000 0.014999 0.014999 0.015000 0.015000 0.015000 0.014999 0.014999 0.015000 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999
1.714 0.014999 0.014999 0.014999 0.014998 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.015000 0.014999 0.015000 0.014999 0.014999 0.014998 0.014998 0.014999 0.014999 0.015000 0.015000 0.014999 0.015000 0.014999 0.014999 0.014999 0.015000 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.015000 0.014998 0.015000 0.014999 0.014999 0.015000
1.856 0.014999 0.014999 0.014998 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014998 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014998 0.014998 0.015000 0.015000 0.015000 0.015000 0.014999 0.014999 0.015000 0.015000 0.014999 0.014999 0.014998 0.014998 0.014999 0.014999 0.014999 0.014999 0.015000 0.014999 0.014999 0.015000 0.014999 0.014999 0.014999
1.999 0.014999 0.014999 0.014998 0.014999 0.014999 0.014999 0.014999 0.015000 0.014999 0.014999 0.014999 0.014999 0.014999 0.014998 0.014999 0.015000 0.014999 0.014998 0.014999 0.014999 0.015000 0.015000 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014998 0.014999 0.014998 0.014999 0.014999 0.014998 0.014999 0.014999 0.015000 0.015000 0.015000 0.015000 0.014998 0.014999 0.014999 0.014999 0.014999
2.142 0.014999 0.015000 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014998 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.015000 0.014999 0.014998 0.014999 0.014999 0.014998 0.014999 0.014999 0.014999 0.014999 0.015000 0.014999 0.014999 0.014999 0.014999 0.015000 0.014999 0.015000 0.014999 0.014999 0.014999 0.014999 0.014999 0.015000 0.015000 0.014999
2.285 0.015000 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.015000 0.014999 0.014998 0.014999 0.014999 0.014999 0.014999 0.014999 0.014998 0.014999 0.014999 0.015000 0.015000 0.015000 0.014999 0.014999 0.014999 0.014999 0.014998 0.014999 0.015000 0.015000 0.014999 0.014999 0.014998 0.014999 0.014999 0.014999 0.015000 0.014998 0.014999 0.014999 0.014999 0.014999 0.014999 0.015000 0.014999
2.428 0.014999 0.014999 0.014999 0.014999 0.014999 0.014998 0.014999 0.014999 0.014999 0.014999 0.014999 0.014998 0.014999 0.014998 0.015000 0.014999 0.014999 0.014998 0.015000 0.014998 0.015000 0.014999 0.014998 0.014998 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.015000 0.014999 0.014999 0.014999 0.014998 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.015000 0.014999 0.014999 0.014999
2.570 0.014999 0.015000 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.015000 0.015000 0.014998 0.014999 0.014999 0.014999 0.014999 0.014999 0.014998 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.015000 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999
2.713 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.015000 0.014999 0.014999 0.014998 0.014999 0.015000 0.014999 0.014998 0.014999 0.014999 0.014999 0.014999 0.015000 0.014999 0.014999 0.014999 0.014999 0.014999 0.014998 0.014999 0.015000 0.014998 0.014999 0.014999 0.014999 0.014999 0.014999 0.014998 0.015000 0.014998 0.014999
2.856 0.014999 0.014999 0.014999 0.014998 0.014999 0.014998 0.014999 0.014999 0.015000 0.014999 0.015000 0.014998 0.014999 0.015000 0.014998 0.014999 0.015000 0.014999 0.014998 0.014999 0.015000 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014998 0.014999 0.014999 0.014999 0.014999 0.015000 0.015000 0.014999
2.999 0.015000 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014998 0.015000 0.014999 0.014999 0.014998 0.015000 0.014999 0.014999 0.015000 0.014999 0.015000 0.014999 0.015000 0.014999 0.014999 0.014998 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014998 0.014999 0.014999 0.014998 0.014998 0.014999 0.014999 0.014998 0.015000 0.014999 0.014999 0.015000 0.015000 0.014999 0.014999 0.014999
3.142 0.014999 0.014999 0.014999 0.014998 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014998 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.015000 0.014999 0.014999 0.014998 0.014999 0.015000 0.014999 0.015000 0.015000 0.014999 0.014999 0.014999 0.014999 0.014998 0.014999 0.015000 0.014999 0.014999 0.015000 0.014999 0.015000 0.014999 0.014999

In [9]:
# sort all frequrents
with np.printoptions(precision=10, suppress=True, threshold=1e10):
    print(np.flipud(np.sort(data.theta_max_fre.values.flatten())))


[0.1044470558 0.021873158  0.0203780629 0.0157637045 0.0150002078 0.0150001412
 0.0150001141 0.0150000557 0.0150000347 0.0150000288 0.0150000204 0.0150000133
 0.0150000037 0.014999988  0.0149999856 0.0149999768 0.0149999685 0.0149999401
 0.0149999085 0.014999908  0.0149998888 0.014999884  0.0149998779 0.0149998618
 0.0149998614 0.0149998327 0.0149998274 0.0149998238 0.0149998137 0.0149998107
 0.0149998053 0.0149998033 0.0149998024 0.0149997997 0.0149997814 0.0149997769
 0.014999773  0.0149997698 0.0149997686 0.0149997672 0.0149997643 0.0149997634
 0.0149997627 0.0149997617 0.0149997502 0.0149997498 0.0149997462 0.0149997445
 0.0149997395 0.0149997358 0.0149997264 0.014999725  0.0149997208 0.0149997191
 0.0149997187 0.0149997187 0.0149997128 0.0149997123 0.0149997102 0.0149997094
 0.0149997039 0.0149996941 0.0149996933 0.0149996931 0.0149996917 0.0149996904
 0.0149996836 0.0149996827 0.0149996805 0.014999678  0.014999678  0.0149996773
 0.0149996759 0.0149996753 0.0149996714 0.0149996689 0.014999668  0.0149996664
 0.0149996646 0.0149996637 0.0149996635 0.0149996631 0.0149996591 0.0149996586
 0.0149996553 0.0149996489 0.0149996469 0.0149996464 0.0149996449 0.0149996436
 0.0149996423 0.0149996415 0.0149996406 0.014999638  0.0149996362 0.0149996361
 0.0149996354 0.0149996295 0.014999626  0.014999623  0.014999622  0.0149996139
 0.0149996129 0.0149996112 0.0149996083 0.0149996076 0.0149996062 0.0149996045
 0.0149996036 0.0149996036 0.0149996035 0.0149996032 0.014999603  0.0149996028
 0.0149996026 0.014999602  0.0149996017 0.014999599  0.0149995972 0.0149995954
 0.014999594  0.0149995908 0.0149995905 0.0149995849 0.0149995843 0.0149995835
 0.0149995835 0.0149995811 0.0149995792 0.0149995775 0.0149995766 0.0149995763
 0.0149995756 0.0149995756 0.0149995755 0.0149995753 0.0149995753 0.014999575
 0.0149995748 0.0149995679 0.0149995677 0.0149995663 0.0149995649 0.0149995643
 0.0149995639 0.0149995583 0.0149995548 0.0149995534 0.0149995511 0.0149995495
 0.0149995473 0.0149995459 0.0149995458 0.0149995443 0.0149995409 0.0149995372
 0.0149995371 0.014999537  0.0149995336 0.0149995327 0.0149995319 0.0149995311
 0.0149995287 0.0149995254 0.014999521  0.0149995207 0.0149995191 0.0149995189
 0.0149995159 0.0149995155 0.0149995144 0.0149995123 0.0149995116 0.01499951
 0.0149995087 0.0149995073 0.014999505  0.0149995001 0.0149995    0.0149994979
 0.0149994956 0.0149994949 0.0149994922 0.0149994914 0.0149994909 0.0149994902
 0.0149994875 0.0149994855 0.014999483  0.0149994829 0.0149994822 0.0149994816
 0.0149994815 0.0149994803 0.0149994794 0.0149994788 0.0149994783 0.0149994757
 0.0149994754 0.0149994751 0.0149994722 0.014999472  0.0149994719 0.0149994714
 0.0149994704 0.014999469  0.0149994686 0.0149994673 0.0149994666 0.0149994576
 0.0149994574 0.0149994552 0.0149994529 0.0149994518 0.0149994512 0.0149994486
 0.0149994435 0.0149994431 0.014999443  0.014999439  0.0149994381 0.0149994369
 0.0149994336 0.0149994335 0.0149994317 0.0149994271 0.0149994254 0.0149994254
 0.0149994228 0.0149994215 0.01499942   0.0149994172 0.0149994154 0.0149994146
 0.0149994108 0.0149994106 0.0149994083 0.0149994066 0.0149994045 0.0149994003
 0.0149993994 0.0149993991 0.0149993985 0.0149993981 0.0149993973 0.0149993929
 0.0149993913 0.0149993911 0.014999391  0.0149993908 0.0149993905 0.0149993903
 0.0149993901 0.01499939   0.0149993872 0.0149993871 0.0149993833 0.0149993828
 0.0149993795 0.0149993773 0.0149993765 0.0149993764 0.0149993739 0.0149993715
 0.0149993701 0.0149993693 0.0149993691 0.0149993684 0.0149993683 0.0149993672
 0.0149993672 0.0149993671 0.0149993671 0.0149993671 0.0149993671 0.0149993671
 0.0149993671 0.0149993671 0.0149993671 0.0149993671 0.0149993671 0.0149993671
 0.0149993671 0.0149993671 0.0149993671 0.0149993671 0.0149993671 0.0149993671
 0.0149993671 0.0149993671 0.0149993671 0.0149993671 0.0149993664 0.0149993649
 0.0149993622 0.0149993614 0.0149993612 0.0149993603 0.0149993595 0.0149993589
 0.0149993585 0.0149993576 0.014999357  0.0149993543 0.0149993538 0.0149993491
 0.0149993486 0.0149993474 0.0149993473 0.0149993473 0.0149993471 0.014999347
 0.0149993461 0.0149993456 0.0149993445 0.0149993434 0.0149993432 0.0149993432
 0.0149993429 0.0149993392 0.0149993389 0.0149993387 0.0149993373 0.0149993327
 0.0149993326 0.0149993312 0.0149993311 0.01499933   0.0149993296 0.0149993277
 0.0149993276 0.014999327  0.0149993264 0.0149993257 0.0149993246 0.0149993244
 0.0149993226 0.0149993222 0.0149993216 0.0149993198 0.0149993186 0.0149993185
 0.0149993164 0.0149993162 0.014999316  0.0149993146 0.0149993144 0.0149993137
 0.0149993118 0.0149993112 0.0149993112 0.0149993112 0.0149993112 0.0149993112
 0.0149993112 0.0149993112 0.0149993112 0.0149993112 0.0149993112 0.0149993112
 0.0149993112 0.0149993112 0.0149993112 0.0149993112 0.0149993112 0.0149993112
 0.0149993112 0.0149993112 0.0149993112 0.0149993112 0.0149993112 0.0149993112
 0.0149993112 0.014999311  0.01499931   0.0149993097 0.0149993094 0.0149993093
 0.0149993085 0.0149993081 0.0149993075 0.0149993063 0.0149993058 0.0149993057
 0.0149993053 0.0149993043 0.0149993031 0.0149993021 0.0149992993 0.0149992969
 0.0149992958 0.0149992954 0.014999295  0.0149992923 0.0149992919 0.0149992908
 0.01499929   0.0149992898 0.0149992894 0.0149992884 0.0149992883 0.0149992881
 0.0149992877 0.0149992876 0.0149992876 0.0149992863 0.0149992862 0.0149992862
 0.0149992852 0.0149992843 0.0149992841 0.0149992819 0.0149992796 0.0149992785
 0.0149992771 0.0149992759 0.0149992756 0.0149992748 0.0149992742 0.014999272
 0.0149992719 0.0149992718 0.0149992713 0.0149992711 0.0149992703 0.0149992702
 0.0149992701 0.0149992692 0.0149992674 0.0149992669 0.014999264  0.0149992632
 0.014999263  0.014999262  0.0149992619 0.0149992596 0.0149992592 0.014999259
 0.0149992582 0.0149992569 0.0149992561 0.0149992559 0.0149992557 0.0149992544
 0.0149992541 0.0149992535 0.014999253  0.0149992526 0.014999252  0.0149992514
 0.0149992504 0.01499925   0.0149992484 0.0149992474 0.0149992468 0.0149992458
 0.0149992457 0.0149992445 0.0149992443 0.0149992441 0.0149992432 0.0149992406
 0.0149992404 0.0149992398 0.0149992389 0.0149992364 0.0149992344 0.0149992332
 0.0149992329 0.0149992326 0.0149992311 0.0149992288 0.0149992268 0.0149992268
 0.0149992263 0.0149992251 0.0149992247 0.0149992246 0.014999224  0.0149992228
 0.0149992227 0.0149992227 0.0149992225 0.0149992219 0.0149992218 0.0149992213
 0.0149992211 0.0149992206 0.0149992187 0.0149992186 0.0149992157 0.0149992155
 0.0149992149 0.0149992136 0.0149992124 0.0149992124 0.0149992121 0.0149992118
 0.0149992097 0.0149992092 0.014999209  0.0149992088 0.0149992075 0.0149992059
 0.0149992056 0.0149992056 0.0149992047 0.0149992042 0.0149992012 0.0149992007
 0.0149992    0.0149991999 0.0149991991 0.0149991986 0.0149991947 0.0149991919
 0.0149991919 0.0149991908 0.0149991907 0.014999189  0.0149991875 0.0149991874
 0.0149991851 0.014999182  0.014999181  0.01499918   0.0149991791 0.014999178
 0.0149991771 0.0149991749 0.0149991736 0.0149991725 0.0149991718 0.0149991718
 0.0149991712 0.0149991672 0.0149991661 0.014999165  0.0149991646 0.014999164
 0.0149991635 0.0149991622 0.0149991606 0.0149991581 0.0149991581 0.014999158
 0.014999157  0.0149991554 0.0149991553 0.0149991543 0.014999154  0.0149991513
 0.0149991508 0.014999146  0.0149991455 0.014999145  0.0149991441 0.0149991434
 0.0149991433 0.014999143  0.0149991426 0.0149991423 0.0149991396 0.0149991391
 0.0149991382 0.0149991376 0.0149991365 0.0149991359 0.0149991336 0.0149991328
 0.0149991327 0.0149991322 0.0149991303 0.0149991302 0.0149991297 0.0149991272
 0.0149991253 0.0149991247 0.0149991241 0.0149991235 0.0149991232 0.0149991226
 0.0149991223 0.0149991218 0.0149991199 0.0149991195 0.0149991181 0.0149991165
 0.0149991159 0.0149991153 0.0149991143 0.0149991138 0.0149991131 0.0149991126
 0.0149991113 0.014999111  0.0149991101 0.0149991091 0.0149991082 0.0149991076
 0.0149991065 0.0149991063 0.0149991034 0.0149991018 0.0149991009 0.0149991
 0.0149990997 0.0149990959 0.0149990946 0.0149990935 0.0149990925 0.0149990915
 0.014999091  0.0149990909 0.0149990885 0.0149990878 0.0149990875 0.0149990873
 0.0149990854 0.0149990843 0.0149990836 0.014999083  0.0149990811 0.0149990776
 0.0149990759 0.0149990744 0.0149990743 0.0149990743 0.0149990723 0.0149990718
 0.0149990709 0.0149990702 0.0149990692 0.0149990663 0.014999066  0.0149990656
 0.0149990646 0.0149990644 0.0149990639 0.0149990609 0.0149990575 0.014999055
 0.0149990541 0.0149990535 0.0149990528 0.0149990525 0.0149990518 0.014999047
 0.0149990453 0.0149990449 0.0149990432 0.0149990422 0.0149990415 0.0149990398
 0.0149990367 0.0149990356 0.0149990345 0.0149990332 0.0149990317 0.0149990302
 0.014999028  0.0149990272 0.0149990253 0.014999025  0.0149990245 0.0149990235
 0.0149990235 0.014999021  0.0149990196 0.0149990187 0.0149990181 0.0149990177
 0.0149990164 0.0149990154 0.014999015  0.014999015  0.0149990149 0.0149990144
 0.0149990143 0.0149990114 0.0149990109 0.0149990106 0.0149990106 0.01499901
 0.0149990098 0.0149990061 0.0149990054 0.0149990048 0.0149990046 0.0149990038
 0.0149990026 0.0149989994 0.014998998  0.0149989897 0.0149989854 0.0149989851
 0.0149989824 0.014998981  0.0149989793 0.0149989784 0.0149989783 0.0149989777
 0.0149989776 0.0149989772 0.0149989766 0.0149989762 0.0149989759 0.0149989758
 0.0149989755 0.0149989752 0.0149989746 0.0149989744 0.0149989694 0.0149989693
 0.014998962  0.0149989618 0.0149989617 0.0149989604 0.0149989593 0.0149989593
 0.0149989578 0.0149989551 0.0149989544 0.0149989492 0.0149989475 0.0149989474
 0.0149989453 0.0149989437 0.0149989424 0.0149989423 0.0149989399 0.0149989365
 0.0149989336 0.0149989325 0.0149989321 0.0149989309 0.01499893   0.014998928
 0.014998928  0.0149989257 0.014998922  0.0149989195 0.0149989193 0.0149989182
 0.0149989162 0.0149989124 0.0149989116 0.0149989115 0.0149989104 0.0149989095
 0.0149989066 0.0149989047 0.0149989043 0.0149988996 0.014998897  0.0149988958
 0.014998895  0.0149988931 0.0149988898 0.0149988896 0.0149988885 0.0149988875
 0.014998885  0.0149988849 0.0149988842 0.0149988812 0.0149988794 0.0149988792
 0.014998871  0.0149988699 0.0149988685 0.0149988666 0.014998864  0.0149988638
 0.0149988591 0.0149988581 0.0149988578 0.0149988577 0.0149988571 0.0149988568
 0.014998855  0.0149988542 0.0149988523 0.0149988516 0.0149988492 0.014998849
 0.0149988479 0.0149988467 0.0149988457 0.0149988439 0.0149988433 0.0149988432
 0.0149988399 0.0149988352 0.0149988339 0.0149988323 0.0149988301 0.0149988298
 0.0149988269 0.014998824  0.0149988237 0.0149988208 0.0149988203 0.0149988195
 0.014998814  0.014998813  0.0149988129 0.0149988107 0.0149988097 0.0149988054
 0.0149988053 0.0149988033 0.0149988025 0.0149987934 0.0149987926 0.0149987922
 0.0149987914 0.0149987861 0.0149987835 0.014998781  0.0149987791 0.0149987755
 0.0149987742 0.0149987735 0.0149987733 0.0149987732 0.0149987702 0.0149987671
 0.0149987668 0.0149987643 0.0149987625 0.0149987617 0.0149987604 0.0149987601
 0.0149987502 0.0149987491 0.0149987452 0.0149987423 0.0149987381 0.0149987354
 0.014998732  0.0149987286 0.0149987275 0.0149987225 0.0149987214 0.0149987189
 0.0149987182 0.0149987163 0.0149987143 0.0149987133 0.0149987128 0.0149987127
 0.0149987111 0.0149987104 0.0149987103 0.0149987086 0.0149987069 0.0149987031
 0.0149987003 0.0149986968 0.0149986943 0.0149986941 0.0149986909 0.0149986909
 0.0149986899 0.0149986896 0.0149986891 0.014998689  0.0149986855 0.0149986844
 0.0149986833 0.0149986831 0.0149986747 0.0149986745 0.0149986727 0.0149986727
 0.0149986707 0.0149986686 0.0149986683 0.0149986634 0.014998654  0.014998642
 0.014998639  0.0149986366 0.0149986301 0.0149986246 0.0149986237 0.0149986223
 0.0149986208 0.0149986156 0.0149986143 0.0149986011 0.0149985979 0.0149985978
 0.0149985965 0.0149985962 0.0149985958 0.0149985945 0.0149985926 0.0149985902
 0.0149985888 0.0149985816 0.0149985793 0.0149985686 0.0149985676 0.0149985627
 0.0149985598 0.0149985584 0.0149985563 0.0149985471 0.0149985394 0.0149985322
 0.0149985285 0.0149985232 0.0149985192 0.0149985165 0.0149985076 0.0149985067
 0.0149985054 0.0149985052 0.014998503  0.0149985005 0.014998497  0.0149984765
 0.0149984718 0.0149984698 0.0149984679 0.0149984623 0.0149984607 0.0149984462
 0.0149984396 0.0149984176 0.0149984167 0.0149984108 0.0149984038 0.0149984009
 0.0149984004 0.0149983991 0.0149983949 0.014998393  0.0149983904 0.0149983854
 0.0149983802 0.0149983772 0.0149983738 0.014998373  0.0149983726 0.0149983685
 0.0149983677 0.0149983675 0.0149983652 0.0149983644 0.0149983522 0.0149983511
 0.0149983451 0.0149983336 0.0149983283 0.0149983281 0.0149983275 0.0149983262
 0.0149983255 0.0149983244 0.0149983199 0.0149983175 0.0149983156 0.0149983125
 0.0149983088 0.0149983064 0.0149983062 0.0149983047 0.0149983032 0.014998301
 0.0149983009 0.0149983007 0.0149982999 0.014998299  0.0149982968 0.0149982931
 0.0149982922 0.0149982901 0.0149982879 0.0149982875 0.0149982871 0.0149982725
 0.0149982723 0.0149982714 0.0149982711 0.014998266  0.0149982645 0.0149982637
 0.0149982609 0.0149982555 0.0149982547 0.0149982542 0.0149982531 0.014998252
 0.0149982495 0.0149982466 0.014998246  0.0149982445 0.0149982435 0.0149982421
 0.014998242  0.0149982343 0.0149982342 0.014998231  0.0149982302 0.0149982261
 0.0149982256 0.0149982249 0.0149982212 0.0149982155 0.0149982117 0.0149982101
 0.0149982085 0.0149982067 0.0149982043 0.0149981986 0.014998197  0.0149981801
 0.0149981744 0.0149981656 0.0149981604 0.0149981585 0.0149981403 0.0149981365
 0.0149981278 0.0149981248 0.0149981198 0.0149981132 0.0149981125 0.0149981088
 0.0149980942 0.0149980822 0.0149980618]

In [10]:
spf_tb.show_traj_phase_map_fre(theta_max_fre)
# spf_tb.show_traj_phase_map_fre(phi_max_fre)
# spf_tb.show_traj_phase_map_fre(psi_max_fre)
# spf_tb.show_traj_phase_map_fre(eta_max_fre)


Out[10]:
True

In [7]:
with pd.option_context('display.max_rows', 100, 'display.max_columns', 100):
    display(type_fre)


ini_phi 0.000 0.143 0.286 0.428 0.571 0.714 0.857 1.000 1.142 1.285 1.428 1.571 1.714 1.856 1.999 2.142 2.285 2.428 2.570 2.713 2.856 2.999 3.142 3.284 3.427 3.570 3.713 3.856 3.998 4.141 4.284 4.427 4.570 4.712 4.855 4.998 5.141 5.284 5.426 5.569 5.712 5.855 5.998 6.140 6.283
ini_theta
0.000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.143 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.286 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.428 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.571 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.714 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.857 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1.000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1.142 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1.285 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1.428 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1.571 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1.714 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1.856 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1.999 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2.142 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2.285 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2.428 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2.570 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2.713 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2.856 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2.999 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3.142 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

In [12]:
# put images with same frequence into a subdirect
importlib.reload(spf_tb)
def t_show_idx(iidx):
    theta = type_fre.index.values[iidx[0][0]]
    phi = type_fre.columns.values[iidx[1][0]]
    print(theta, phi)
    tipical_th_ph_list.append((theta, phi))
    spf_tb.show_pickle_results(job_dir, theta, phi, table_name)
    return True

def t_show_idx_list(iidx, nshow=5, Table_t_range1=np.array((0, np.inf)), Table_t_range2=np.array((0, np.inf))):
    nshow = int(np.min((nshow, iidx[0].size)))
    tidx = np.random.choice(iidx[0].size, nshow, replace=False)
    theta = type_fre.index.values[iidx[0][tidx]]
    phi = type_fre.columns.values[iidx[1][tidx]]
    theta_phi_list = np.vstack((theta, phi)).T
#     spf_tb.show_table_theta_phi_list(theta_phi_list, job_dir, Table_t_range=Table_t_range1, figsize=np.array((20, 20)), dpi=100)
    spf_tb.show_table_result_list(theta_phi_list, job_dir, Table_t_range=Table_t_range2, figsize=np.array((16, 9)), dpi=100)
    return True

tfre = theta_max_fre.copy()
check_fre_list = [0.0150]
atol_fre_list =  [0.0002]
Table_t_range1 = np.array((0, 1000))
Table_t_range2 = np.array((4500, np.inf))
nshow = np.inf

tipical_th_ph_list = []
type_fre = tfre.copy()
type_fre.iloc[:, :] = len(check_fre_list) 
for i0, (check_fre, atol_fre) in enumerate(zip(check_fre_list, atol_fre_list)):
    use_idx = np.isclose(tfre, check_fre, rtol=0, atol=atol_fre)
    type_fre.iloc[use_idx] = i0
    iidx = np.where(use_idx)
#     t_show_idx(iidx)
    t_show_idx_list(iidx, nshow=nshow, Table_t_range1=Table_t_range1, Table_t_range2=Table_t_range2)

# plot one of the remaind cases
if np.any(type_fre.values == len(check_fre_list)):
    iidx = np.where(type_fre.values == len(check_fre_list))
#     t_show_idx(iidx)
    t_show_idx_list(iidx, nshow=nshow, Table_t_range1=Table_t_range1, Table_t_range2=Table_t_range2)

# spf_tb.show_traj_phase_map_type(type_fre)
# spf_tb.save_separate_angleList_fft(job_dir, tfre, check_fre_list, atol_fre_list)



In [10]:
# put images with same frequence into a subdirect
importlib.reload(spf_tb)
def t_show_idx(iidx):
    theta = type_fre.index.values[iidx[0][0]]
    phi = type_fre.columns.values[iidx[1][0]]
    print(theta, phi)
    tipical_th_ph_list.append((theta, phi))
    return True

tfre = theta_max_fre.copy()
check_fre_list = [0.0150]
atol_fre_list =  [0.0002]
Table_t_range1 = np.array((0, 1000))
Table_t_range2 = np.array((4500, np.inf))
tipical_th_ph_list = []

type_fre = tfre.copy()
type_fre.iloc[:, :] = len(check_fre_list) 
for i0, (check_fre, atol_fre) in enumerate(zip(check_fre_list, atol_fre_list)):
    use_idx = np.isclose(tfre, check_fre, rtol=0, atol=atol_fre)
    type_fre.iloc[use_idx] = i0
    iidx = np.where(use_idx)
    t_show_idx(iidx)

# plot one of the remaind cases
if np.any(type_fre.values == len(check_fre_list)):
    iidx = np.where(type_fre.values == len(check_fre_list))
    t_show_idx(iidx)

# spf_tb.show_traj_phase_map_type(type_fre)
# spf_tb.save_separate_angleList_fft(job_dir, tfre, check_fre_list, atol_fre_list)

Table_t_range = np.array((4500, np.inf))
figsize = np.array((16, 9))
dpi = 100

label_list = np.arange(len(tipical_th_ph_list))
spf_tb.show_table_theta_phi_psi_fft_list(tipical_th_ph_list, job_dir, label_list=label_list, figsize=figsize, dpi=dpi)
spf_tb.show_table_result_list(tipical_th_ph_list, job_dir, label_list=label_list, Table_t_range=Table_t_range,
                              figsize=figsize, dpi=dpi)


0.0 0.0
1.571 1.428
Out[10]:
True

In [ ]:
# create phase map
importlib.reload(spf_tb)
def tget_ax0():
    n_xticks = 32
    xticks = np.arange(n_xticks)
    fig = plt.figure(figsize=(20, 20))
    fig.patch.set_facecolor('white')
    axs = []
    axs.append(fig.add_subplot(221, polar=True))
    axs.append(fig.add_subplot(222, polar=True))
    axs.append(fig.add_subplot(223, polar=True))
    axs.append(fig.add_subplot(224, polar=True))
    for ax0 in axs:
        ax0.set_xticks(xticks / n_xticks * 2 * np.pi)
        ax0.set_xticklabels(['$\dfrac{%d}{%d}2\pi$' % (i0, n_xticks) for i0 in xticks])
        ax0.set_yticklabels([])
        ax0.set_ylim(0, np.pi)
    plt.tight_layout()
    return fig, axs

check_fre_list = [1.000, 0.0220, 1.0000, 0.0540]
atol_list =      [0.004, 0.0005, 0.0005, 0.0005]
color_list =     ['b',   'g',    'r',    'c',   'm', 'y', 'k']
psi_lim_fct = 20
resampling_fct = 10

data0['use_max_fre'] = data0.theta_max_fre
case_path_list = spf_tb.separate_fre_path(check_fre_list, atol_list, data0, pickle_path_list)
for idx, psi_lim1 in enumerate(np.linspace(0, 2 * np.pi, psi_lim_fct * 16, 
                                           endpoint=False)[::psi_lim_fct]):
    fig, (ax0, ax1, ax2, ax3) = tget_ax0()
    ax_list = [ax0, ax0, ax1, ax2, ax3]
    psi_lim = (psi_lim1, psi_lim1 + 2 * np.pi / (psi_lim_fct * 16))
    desc = '$\psi\in[%.3f\pi, %.3f\pi)$' % ((psi_lim[0] / np.pi), (psi_lim[1] / np.pi))
    fig.suptitle(desc, fontsize=fontsize*0.8)
    for check_fre, case_path, color, axi in zip(check_fre_list, case_path_list, color_list, ax_list):
        thandle = '%f' % check_fre
        spf_tb.draw_phase_map_theta(case_path, color, psi_lim, axs=(axi, ax_list[-1]), thandle=thandle, 
                                    resampling=True, resampling_fct=resampling_fct)
    tdir = os.path.join(PWD, job_dir, 'phase_mape_fre')
    if not os.path.exists(tdir):
        os.makedirs(tdir)
    figname = os.path.join(tdir, '%04d.png' % (idx))
    fig.savefig(os.path.join(tdir, figname))
    print('save to %s' % figname)
    plt.close(fig)


/home/zhangji/stokes_flow_master/codeStore/support_fun_table.py:12: UserWarning: matplotlib.pyplot as already been imported, this call will have no effect.
  matplotlib.use('agg')
0th frequence range: (0.996000, 1.004000)
1th frequence range: (0.021500, 0.022500)
2th frequence range: (0.999500, 1.000500)
3th frequence range: (0.053500, 0.054500)
tmax_fre=0.048002, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.639_ph0.401_ps0.000_D20190714_T225427.pickle
tmax_fre=0.052003, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th0.683_ph2.941_ps0.000_D20190715_T023809.pickle
tmax_fre=0.035997, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.639_ph1.738_ps0.000_D20190715_T020546.pickle
tmax_fre=0.052011, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.366_ph3.075_ps0.000_D20190715_T024550.pickle
tmax_fre=0.051998, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.229_ph3.208_ps0.000_D20190715_T025014.pickle
tmax_fre=0.036003, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.503_ph2.005_ps0.000_D20190715_T020546.pickle
tmax_fre=0.052012, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th2.322_ph3.476_ps0.000_D20190715_T031731.pickle
tmax_fre=0.052001, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th0.683_ph3.075_ps0.000_D20190715_T024550.pickle
tmax_fre=0.052001, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th2.322_ph3.208_ps0.000_D20190715_T025013.pickle
tmax_fre=0.051998, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.093_ph3.208_ps0.000_D20190715_T025013.pickle
tmax_fre=0.050005, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.639_ph0.000_ps0.000_D20190714_T225427.pickle
tmax_fre=0.052002, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.366_ph3.208_ps0.000_D20190715_T025014.pickle
tmax_fre=0.052001, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th0.820_ph3.075_ps0.000_D20190715_T024550.pickle
tmax_fre=0.051997, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th2.459_ph3.342_ps0.000_D20190715_T031151.pickle
tmax_fre=0.052005, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.093_ph2.941_ps0.000_D20190715_T023808.pickle
tmax_fre=0.050003, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th3.005_ph0.134_ps0.000_D20190714_T225427.pickle
tmax_fre=0.052011, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th2.185_ph3.342_ps0.000_D20190715_T031150.pickle
tmax_fre=0.052004, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.639_ph3.208_ps0.000_D20190715_T025013.pickle
tmax_fre=0.039005, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.639_ph4.011_ps0.000_D20190715_T032724.pickle
tmax_fre=0.049996, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.366_ph6.150_ps0.000_D20190715_T045619.pickle
tmax_fre=0.035999, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.639_ph1.069_ps0.000_D20190715_T005116.pickle
tmax_fre=0.052003, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th0.956_ph2.941_ps0.000_D20190715_T023809.pickle
tmax_fre=0.035999, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.639_ph1.604_ps0.000_D20190715_T020546.pickle
tmax_fre=0.035001, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.503_ph4.679_ps0.000_D20190715_T040314.pickle
tmax_fre=0.052007, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.503_ph3.075_ps0.000_D20190715_T024550.pickle
tmax_fre=0.035004, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.503_ph1.471_ps0.000_D20190715_T013943.pickle
tmax_fre=0.050013, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.229_ph6.150_ps0.000_D20190715_T045619.pickle
tmax_fre=0.037003, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.639_ph5.080_ps0.000_D20190715_T040605.pickle
tmax_fre=0.051999, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th0.137_ph3.075_ps0.000_D20190715_T024550.pickle
tmax_fre=0.049997, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th2.732_ph0.134_ps0.000_D20190714_T225427.pickle
tmax_fre=0.050005, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th0.956_ph0.000_ps0.000_D20190714_T225427.pickle
tmax_fre=0.048009, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.912_ph0.401_ps0.000_D20190714_T225427.pickle
tmax_fre=0.052011, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th2.459_ph3.208_ps0.000_D20190715_T025014.pickle
tmax_fre=0.035998, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.503_ph4.412_ps0.000_D20190715_T035348.pickle
tmax_fre=0.052006, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th2.868_ph3.476_ps0.000_D20190715_T031732.pickle
tmax_fre=0.037005, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.639_ph4.144_ps0.000_D20190715_T032725.pickle
tmax_fre=0.052001, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.912_ph3.208_ps0.000_D20190715_T025014.pickle
tmax_fre=0.051999, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th0.546_ph2.941_ps0.000_D20190715_T023808.pickle
tmax_fre=0.035998, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.503_ph1.203_ps0.000_D20190715_T011130.pickle
tmax_fre=0.036000, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.639_ph4.412_ps0.000_D20190715_T035348.pickle
tmax_fre=0.052007, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th3.005_ph3.208_ps0.000_D20190715_T025013.pickle
tmax_fre=0.052017, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th0.956_ph3.208_ps0.000_D20190715_T025013.pickle
tmax_fre=0.051997, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th2.732_ph3.342_ps0.000_D20190715_T031150.pickle
tmax_fre=0.036002, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.503_ph5.214_ps0.000_D20190715_T040610.pickle
tmax_fre=0.052003, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th0.956_ph3.075_ps0.000_D20190715_T024550.pickle
tmax_fre=0.035001, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.503_ph1.604_ps0.000_D20190715_T020546.pickle
tmax_fre=0.051999, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th3.005_ph3.476_ps0.000_D20190715_T031732.pickle
tmax_fre=0.052012, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th0.546_ph2.807_ps0.000_D20190715_T023653.pickle
tmax_fre=0.052001, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th0.820_ph2.941_ps0.000_D20190715_T023809.pickle
tmax_fre=0.052000, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th2.868_ph3.342_ps0.000_D20190715_T031151.pickle
tmax_fre=0.036002, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.639_ph4.813_ps0.000_D20190715_T040330.pickle
tmax_fre=0.036003, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.639_ph1.203_ps0.000_D20190715_T011131.pickle
tmax_fre=0.036007, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.503_ph2.139_ps0.000_D20190715_T021010.pickle
tmax_fre=0.051997, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th2.049_ph3.342_ps0.000_D20190715_T031151.pickle
tmax_fre=0.050010, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.912_ph0.000_ps0.000_D20190714_T225427.pickle
tmax_fre=0.036006, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.639_ph4.946_ps0.000_D20190715_T040521.pickle
tmax_fre=0.036000, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.639_ph4.545_ps0.000_D20190715_T040119.pickle
tmax_fre=0.051997, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th0.273_ph3.075_ps0.000_D20190715_T024550.pickle
tmax_fre=0.051997, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th0.273_ph2.941_ps0.000_D20190715_T023808.pickle
tmax_fre=0.036003, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.503_ph5.080_ps0.000_D20190715_T040604.pickle
tmax_fre=0.052000, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.912_ph3.342_ps0.000_D20190715_T031150.pickle
tmax_fre=0.036005, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.639_ph4.679_ps0.000_D20190715_T040314.pickle
tmax_fre=0.051997, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th0.410_ph2.807_ps0.000_D20190715_T142926.pickle
tmax_fre=0.035000, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.503_ph1.738_ps0.000_D20190715_T020547.pickle
tmax_fre=0.051999, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th0.410_ph2.941_ps0.000_D20190715_T023809.pickle
tmax_fre=0.051997, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th0.137_ph2.807_ps0.000_D20190715_T023653.pickle
tmax_fre=0.052001, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.776_ph3.342_ps0.000_D20190715_T031151.pickle
tmax_fre=0.036997, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.503_ph5.347_ps0.000_D20190715_T042036.pickle
tmax_fre=0.049998, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th0.820_ph6.016_ps0.000_D20190715_T045020.pickle
tmax_fre=0.051997, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th2.868_ph3.208_ps0.000_D20190715_T025013.pickle
tmax_fre=0.036998, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.503_ph4.278_ps0.000_D20190715_T033910.pickle
tmax_fre=0.045999, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th3.142_ph3.476_ps0.000_D20190715_T031731.pickle
tmax_fre=0.053009, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th3.142_ph0.267_ps0.000_D20190714_T225427.pickle
tmax_fre=0.051996, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.503_ph5.481_ps0.000_D20190715_T043702.pickle
tmax_fre=0.035999, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.639_ph1.471_ps0.000_D20190715_T013943.pickle
tmax_fre=0.052000, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.366_ph3.342_ps0.000_D20190715_T031151.pickle
tmax_fre=0.052004, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.503_ph3.208_ps0.000_D20190715_T025014.pickle
tmax_fre=0.052000, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th2.185_ph3.476_ps0.000_D20190715_T031731.pickle
tmax_fre=0.052003, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.776_ph3.208_ps0.000_D20190715_T025014.pickle
tmax_fre=0.051999, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.776_ph3.476_ps0.000_D20190715_T031732.pickle
tmax_fre=0.049998, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.639_ph0.267_ps0.000_D20190714_T225427.pickle
tmax_fre=0.052006, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.639_ph3.075_ps0.000_D20190715_T024550.pickle
tmax_fre=0.049996, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th0.956_ph6.283_ps0.000_D20190715_T045619.pickle
tmax_fre=0.036003, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.639_ph1.872_ps0.000_D20190715_T020547.pickle
tmax_fre=0.052001, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th3.005_ph3.342_ps0.000_D20190715_T031151.pickle
tmax_fre=0.038000, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.503_ph2.273_ps0.000_D20190715_T021007.pickle
tmax_fre=0.050002, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.776_ph0.267_ps0.000_D20190714_T225427.pickle
tmax_fre=0.050000, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.912_ph6.283_ps0.000_D20190715_T045619.pickle
tmax_fre=0.052012, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th0.546_ph3.075_ps0.000_D20190715_T024550.pickle
tmax_fre=0.051999, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.503_ph3.342_ps0.000_D20190715_T031150.pickle
tmax_fre=0.035999, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.503_ph4.545_ps0.000_D20190715_T040118.pickle
tmax_fre=0.051997, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th2.459_ph3.476_ps0.000_D20190715_T031731.pickle
tmax_fre=0.052011, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th2.049_ph3.476_ps0.000_D20190715_T031732.pickle
tmax_fre=0.034998, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.503_ph4.813_ps0.000_D20190715_T040331.pickle
tmax_fre=0.049999, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th3.142_ph3.208_ps0.000_D20190715_T025014.pickle
tmax_fre=0.048007, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.093_ph6.016_ps0.000_D20190715_T045021.pickle
tmax_fre=0.046996, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th0.683_ph2.807_ps0.000_D20190715_T023653.pickle
tmax_fre=0.035999, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.639_ph1.337_ps0.000_D20190715_T011429.pickle
tmax_fre=0.049997, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th0.683_ph6.016_ps0.000_D20190715_T142926.pickle
tmax_fre=0.049999, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.639_ph6.283_ps0.000_D20190715_T045619.pickle
tmax_fre=0.051998, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.639_ph3.342_ps0.000_D20190715_T031150.pickle
tmax_fre=0.051997, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.229_ph3.075_ps0.000_D20190715_T024550.pickle
tmax_fre=0.035006, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.503_ph1.872_ps0.000_D20190715_T020547.pickle
tmax_fre=0.052006, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th2.595_ph3.342_ps0.000_D20190715_T031150.pickle
tmax_fre=0.052003, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.776_ph3.075_ps0.000_D20190715_T024550.pickle
tmax_fre=0.052009, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.912_ph3.476_ps0.000_D20190715_T031731.pickle
tmax_fre=0.052002, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th0.410_ph2.807_ps0.000_D20190715_T023652.pickle
tmax_fre=0.036997, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.503_ph1.069_ps0.000_D20190715_T005116.pickle
tmax_fre=0.051997, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th2.185_ph3.208_ps0.000_D20190715_T025013.pickle
tmax_fre=0.045997, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th0.683_ph6.016_ps0.000_D20190715_T045020.pickle
tmax_fre=0.052011, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th2.595_ph3.476_ps0.000_D20190715_T031731.pickle
tmax_fre=0.036003, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.503_ph1.337_ps0.000_D20190715_T011428.pickle
tmax_fre=0.051999, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th2.322_ph3.342_ps0.000_D20190715_T031151.pickle
tmax_fre=0.037008, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.639_ph0.936_ps0.000_D20190715_T005118.pickle
tmax_fre=0.047998, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.912_ph0.267_ps0.000_D20190714_T225427.pickle
tmax_fre=0.037000, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.639_ph2.005_ps0.000_D20190715_T020546.pickle
tmax_fre=0.051997, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th2.049_ph3.208_ps0.000_D20190715_T025014.pickle
tmax_fre=0.052018, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.093_ph3.075_ps0.000_D20190715_T024550.pickle
tmax_fre=0.035000, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.503_ph4.946_ps0.000_D20190715_T040522.pickle
tmax_fre=0.051997, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th2.732_ph3.476_ps0.000_D20190715_T031731.pickle
tmax_fre=0.052007, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th3.142_ph0.134_ps0.000_D20190714_T225427.pickle
tmax_fre=0.052005, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th0.137_ph2.941_ps0.000_D20190715_T023808.pickle
tmax_fre=0.036007, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.639_ph4.278_ps0.000_D20190715_T033910.pickle
tmax_fre=0.052002, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th0.410_ph3.075_ps0.000_D20190715_T024550.pickle
tmax_fre=0.052000, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th2.595_ph3.208_ps0.000_D20190715_T025013.pickle
tmax_fre=0.049997, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.366_ph0.134_ps0.000_D20190714_T225427.pickle
tmax_fre=0.052009, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th0.273_ph2.807_ps0.000_D20190715_T023653.pickle



save to /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/phase_mape_fre/0000.png



save to /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/phase_mape_fre/0001.png



save to /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/phase_mape_fre/0002.png


In [ ]:

calculate the phase map of stable trajectory using the KMeans method.


In [186]:
# show phase map of theta-phi, part 1
importlib.reload(spf_tb)
job_dir = 'ecoC01B05_T0.01_psi-0a'
table_name = 'ecoC01B05_T0.01'

t_headle = '(.*?).pickle'
t_path = os.listdir(os.path.join(PWD, job_dir))
filename_list = [filename for filename in os.listdir(os.path.join(PWD, job_dir)) 
                 if re.match(t_headle, filename) is not None]
ini_theta_list = []
ini_phi_list = []
lst_eta_list = []
pickle_path_list = []
idx_list = []
theta_primary_fre_list = []
phi_primary_fre_list = []
psi_primary_fre_list = []
for i0, tname in enumerate(tqdm_notebook(filename_list[:])):
    tpath = os.path.join(PWD, job_dir, tname)
    with open(tpath, 'rb') as handle:
        tpick = pickle.load(handle)
    ini_theta_list.append(tpick['ini_theta'])
    ini_phi_list.append(tpick['ini_phi'])
    lst_eta_list.append(tpick['Table_eta'][-1])
    pickle_path_list.append(tpath)
    idx_list.append(i0)
    
    # fft rule
    tx = tpick['Table_t']
    tmin = np.max((0, tx.max() - 1000))
    idx = tx > tmin
    # the last frequence is the major frequence. 
    use_fft_number = 3
    t1 = -use_fft_number - 1
    theta_primary_fre_list.append(spf_tb.get_primary_fft_fre(tx[idx], tpick['Table_theta'][idx])[t1:-1])
    phi_primary_fre_list.append(spf_tb.get_primary_fft_fre(tx[idx], tpick['Table_phi'][idx])[t1:-1])
    psi_primary_fre_list.append(spf_tb.get_primary_fft_fre(tx[idx], tpick['Table_psi'][idx])[t1:-1])


/home/zhangji/anaconda3/lib/python3.5/site-packages/ipykernel/__main__.py:17: TqdmDeprecationWarning: This function will be removed in tqdm==5.0.0
Please use `tqdm.notebook.tqdm` instead of `tqdm.tqdm_notebook`


In [216]:
# show phase map of theta-phi, part 2
def show_phase_map(tuse):
    fig = plt.figure(figsize=(20, 12), dpi=300)
    fig.patch.set_facecolor('white')
    ax0 = fig.add_subplot(111, polar=True)
    n_xticks = 32
    xticks = np.arange(n_xticks)
    ax0.set_xticks(xticks / n_xticks * 2 * np.pi)
    ax0.set_xticklabels(['$\dfrac{%d}{%d}2\pi$' % (i0, n_xticks) for i0 in xticks])
    ax0.set_yticklabels([])
    ax0.set_ylim(0, np.pi)
    tdata = tuse.values
    im = ax0.pcolor(tuse.columns.values, tuse.index.values, tdata, 
                    cmap=plt.get_cmap('Set2', np.nanmax(tdata)+1), 
                    vmin=np.nanmin(tdata)-.5, vmax=np.nanmax(tdata)+.5)
    ticks = np.arange(np.nanmin(tdata), np.nanmax(tdata)+1)
    fig.colorbar(im, ax=ax0, orientation='vertical', ticks=ticks).ax.tick_params(labelsize=fontsize)

In [257]:
np.around(np.pi, 3)


Out[257]:
3.142

In [239]:
from sklearn.cluster import KMeans
from sklearn.mixture import GaussianMixture

use_data = np.hstack((np.vstack(theta_primary_fre_list)[:, 1:], 
                      np.vstack(phi_primary_fre_list)[:, 1:]))
#KMeans
km = KMeans(n_clusters=6, n_init=10, max_iter=1000, tol=1e-9, precompute_distances=True, n_jobs=-1, random_state=0)
km.fit(use_data)
km.predict(use_data)
tlabels = km.labels_

# # personal process
# tlabels[tlabels == 4] = 3

tdata1 = pd.DataFrame({'ini_theta': np.around(ini_theta_list, 3), 
                      'ini_phi': np.around(ini_phi_list, 3), 
                      'lst_eta': np.around(lst_eta_list, 3), 
                      'use_fre': tlabels, 
                      'data_idx': idx_list })
tdata1 = tdata1.pivot_table(index=['ini_theta'], columns=['ini_phi'])
show_phase_map(tdata1.use_fre)



In [250]:
np.array(ini_theta_list)[tlabels==show_tlabel]


Out[250]:
array([0.81955, 0.40977, 2.18546, 0.81955, 0.68295, 0.54636, 0.81955, 1.77568, 2.59523,
       2.59523, 1.5025 , 2.86841, 0.13659, 2.04887, 2.04887, 1.5025 , 1.77568, 2.59523,
       0.95614, 0.40977, 0.81955, 0.40977, 2.04887, 1.77568, 1.63909, 0.13659, 1.77568,
       1.36591, 1.63909, 1.36591, 1.77568, 2.32205, 3.005  , 2.32205, 0.54636, 2.32205,
       1.36591, 3.14159, 2.18546, 3.005  , 0.81955, 2.73182, 2.04887, 1.09273, 3.14159,
       2.86841, 0.27318, 1.77568, 2.18546, 0.27318, 3.14159, 2.73182, 1.5025 , 0.54636,
       1.36591, 1.5025 , 2.45864, 1.63909, 3.005  , 0.95614, 1.36591, 2.59523, 1.77568,
       0.81955, 1.63909, 2.18546, 2.04887, 0.54636, 0.40977, 0.13659, 1.63909, 2.18546,
       2.18546, 0.40977, 1.22932, 2.73182, 1.77568, 2.32205, 3.14159, 1.09273, 0.27318,
       2.59523, 1.36591, 1.36591, 3.005  , 2.18546, 2.59523, 2.45864, 0.40977, 1.09273,
       2.59523, 1.77568, 2.45864, 1.5025 , 0.27318, 1.63909, 2.04887, 0.95614, 2.45864,
       0.68295, 1.36591, 1.36591, 2.59523, 1.22932, 2.32205, 2.59523, 2.45864, 2.86841,
       0.54636, 2.45864, 2.86841, 2.32205, 1.77568, 1.22932, 1.22932, 2.73182, 2.86841,
       0.54636, 0.54636, 2.86841, 2.86841, 1.22932, 1.5025 , 2.73182, 1.36591, 1.5025 ,
       1.36591, 2.59523, 1.63909, 0.40977, 0.81955, 1.77568, 0.68295, 0.27318, 1.77568,
       0.68295, 1.36591, 0.40977, 0.95614, 1.36591, 0.54636, 2.32205, 0.27318, 2.45864,
       1.36591, 0.81955, 0.68295, 1.22932, 3.14159, 2.04887, 1.09273, 0.13659, 0.95614,
       3.005  , 2.18546, 2.32205, 0.40977, 0.95614, 2.73182, 0.13659, 1.5025 , 2.45864,
       0.13659, 2.04887, 0.68295, 2.18546, 1.77568, 0.40977, 0.54636, 0.13659, 1.5025 ,
       0.95614, 0.95614, 1.36591, 0.40977, 0.81955, 0.95614, 1.77568, 2.86841, 0.68295,
       0.27318, 0.68295, 2.32205, 0.27318, 0.13659, 0.54636, 0.27318, 1.36591, 1.91227,
       2.73182, 2.18546, 2.59523, 3.14159, 3.14159, 2.32205, 2.04887, 0.40977, 2.59523,
       3.14159, 1.5025 , 2.59523, 3.005  , 0.54636, 2.18546, 0.13659, 0.68295, 2.86841,
       3.005  , 2.73182, 2.73182, 3.005  , 0.95614, 1.5025 , 2.32205, 1.77568, 3.14159,
       2.45864, 0.81955, 0.68295, 3.005  , 1.91227, 2.86841, 0.54636, 1.36591, 1.91227,
       1.63909, 0.54636, 0.95614, 2.73182, 0.68295, 1.36591, 2.18546, 3.14159])

In [251]:
importlib.reload(spf_tb)
show_tlabel = 0

for theta, phi in zip(np.array(ini_theta_list)[tlabels==show_tlabel][:10], 
                         np.array(ini_phi_list)[tlabels==show_tlabel][:10]): 
    spf_tb.show_pickle_results(job_dir, theta, phi, table_name, fast_mode=1)


-ini_theta 0.819546 -ini_phi 1.604218 -ini_psi 0.000000
-ini_theta 0.409773 -ini_phi 0.133685 -ini_psi 0.000000
-ini_theta 2.185456 -ini_phi 0.534739 -ini_psi 0.000000
-ini_theta 0.819546 -ini_phi 2.540011 -ini_psi 0.000000
-ini_theta 0.682955 -ini_phi 0.133685 -ini_psi 0.000000
-ini_theta 0.546364 -ini_phi 0.534739 -ini_psi 0.000000
-ini_theta 0.819546 -ini_phi 0.133685 -ini_psi 0.000000
-ini_theta 1.775683 -ini_phi 0.935794 -ini_psi 0.000000
-ini_theta 2.595229 -ini_phi 0.267370 -ini_psi 0.000000
-ini_theta 2.595229 -ini_phi 0.133685 -ini_psi 0.000000

In [241]:
importlib.reload(spf_tb)

for show_tlabel in np.arange(tlabels.max()+1): 
    theta = np.array(ini_theta_list)[tlabels==show_tlabel][0]
    phi = np.array(ini_phi_list)[tlabels==show_tlabel][0]
    spf_tb.show_pickle_results(job_dir, theta, phi, table_name, fast_mode=2)


-ini_theta 0.819546 -ini_phi 1.604218 -ini_psi 0.000000
-ini_theta 3.005002 -ini_phi 0.401054 -ini_psi 0.000000
-ini_theta 1.639092 -ini_phi 0.267370 -ini_psi 0.000000
-ini_theta 3.141592 -ini_phi 0.334212 -ini_psi 0.000000
-ini_theta 2.595229 -ini_phi 2.807381 -ini_psi 0.000000
-ini_theta 2.458638 -ini_phi 3.074750 -ini_psi 0.000000

In [ ]:
tlabels=