In [1]:
# import numpy as np

# # !/usr/bin/env python3
# # -*- coding: utf-8 -*-
# """
# Created on 20181219

# @author: zhangji

# Trajection of a ellipse, Jeffery equation. 
# """

# %pylab inline
# pylab.rcParams['figure.figsize'] = (25, 11)
# fontsize = 40

# import numpy as np
# import scipy as sp
# from scipy.optimize import leastsq, curve_fit
# from scipy import interpolate
# from scipy.interpolate import interp1d
# from scipy.io import loadmat, savemat
# # import scipy.misc

# import matplotlib
# from matplotlib import pyplot as plt
# from matplotlib import animation, rc
# import matplotlib.ticker as mtick
# from mpl_toolkits.axes_grid1.inset_locator import inset_axes, zoomed_inset_axes
# from mpl_toolkits.mplot3d import Axes3D, axes3d

# from sympy import symbols, simplify, series, exp
# from sympy.matrices import Matrix
# from sympy.solvers import solve

# from IPython.display import display, HTML
# from tqdm import tqdm_notebook as tqdm
# import pandas as pd
# import re
# from scanf import scanf
# import os
# import glob

# from codeStore import support_fun as spf
# from src.support_class import *
# from src import stokes_flow as sf

# rc('animation', html='html5')
# PWD = os.getcwd()
# font = {'size': 20}
# matplotlib.rc('font', **font)
# np.set_printoptions(linewidth=90, precision=5)

%load_ext autoreload
%autoreload 2

from tqdm.notebook import tqdm as tqdm_notebook
import os
import glob
import natsort 
import numpy as np
import scipy as sp
from scipy.optimize import leastsq, curve_fit
from scipy import interpolate, integrate
from scipy import spatial, signal
# from scipy.interpolate import interp1d
from scipy.io import loadmat, savemat
# import scipy.misc
import importlib
from IPython.display import display, HTML
import pandas as pd
import pickle
import re
from scanf import scanf

import matplotlib
# matplotlib.use('agg')
from matplotlib import pyplot as plt
import matplotlib.colors as colors
from matplotlib import animation, rc
import matplotlib.ticker as mtick
from mpl_toolkits.axes_grid1.inset_locator import inset_axes, zoomed_inset_axes
from mpl_toolkits.mplot3d import Axes3D, axes3d
from mpl_toolkits.axes_grid1.axes_divider import make_axes_locatable
from mpl_toolkits.mplot3d.art3d import Line3DCollection
from matplotlib import cm

from tqdm import tqdm, tqdm_notebook
from time import time
from src.support_class import *
from src import jeffery_model as jm
from codeStore import support_fun as spf
from codeStore import support_fun_table as spf_tb

# %matplotlib notebook
%matplotlib inline
rc('animation', html='html5')
fontsize = 40
PWD = os.getcwd()

In [2]:
fig = plt.figure(figsize=(2, 2))
fig.patch.set_facecolor('white')
ax0 = fig.add_subplot(1, 1, 1)



In [3]:
job_dir = 'ecoC01B05_wt0.3_psi-0a'
table_name = 'ecoC01B05_tao1_wm0.3'

In [4]:
# show phase map of theta-phi, load date
importlib.reload(spf_tb)

t_headle = '(.*?).pickle'
t_path = os.listdir(os.path.join(PWD, job_dir))
filename_list = [filename for filename in os.listdir(os.path.join(PWD, job_dir)) 
                 if re.match(t_headle, filename) is not None]
ini_theta_list = []
ini_phi_list = []
lst_eta_list = []
theta_max_fre_list = []
phi_max_fre_list = []
psi_max_fre_list = []
eta_max_fre_list = []
pickle_path_list = []
idx_list = []
for i0, tname in enumerate(tqdm_notebook(filename_list[:])):
    tpath = os.path.join(PWD, job_dir, tname)
    with open(tpath, 'rb') as handle:
        tpick = pickle.load(handle)
    ini_theta_list.append(tpick['ini_theta'])
    ini_phi_list.append(tpick['ini_phi'])
    lst_eta_list.append(tpick['Table_eta'][-1])
    pickle_path_list.append(tpath)
    idx_list.append(i0)
    
    # fft rule
    tx = tpick['Table_t']
    tmin = np.max((0, tx.max() - 1000))
    idx = tx > tmin    
    freq_pk = spf_tb.get_major_fre(tx[idx], tpick['Table_theta'][idx])
    idx = tx > (tx.max() - 1 / freq_pk * 10)
    theta_max_fre_list.append(spf_tb.get_major_fre(tx[idx], tpick['Table_theta'][idx]))
    phi_max_fre_list.append(spf_tb.get_major_fre(tx[idx], tpick['Table_phi'][idx]))
    psi_max_fre_list.append(spf_tb.get_major_fre(tx[idx], tpick['Table_psi'][idx]))
    eta_max_fre_list.append(spf_tb.get_major_fre(tx[idx], tpick['Table_eta'][idx]))

data0 = pd.DataFrame({'ini_theta': np.around(ini_theta_list, 3), 
                 'ini_phi': np.around(ini_phi_list, 3), 
                 'lst_eta': np.around(lst_eta_list, 3), 
                 'theta_max_fre': theta_max_fre_list, 
                 'phi_max_fre': phi_max_fre_list, 
                 'psi_max_fre': psi_max_fre_list, 
                 'eta_max_fre': eta_max_fre_list, 
                 'data_idx': idx_list })
data = data0.pivot_table(index=['ini_theta'], columns=['ini_phi'])
lst_eta = data.lst_eta
theta_max_fre = data.theta_max_fre
phi_max_fre = data.phi_max_fre
psi_max_fre = data.psi_max_fre
eta_max_fre = data.eta_max_fre
data_idx = data.data_idx.fillna(-1).astype(int)


/anaconda3/envs/py35/lib/python3.5/site-packages/ipykernel_launcher.py:17: TqdmDeprecationWarning: This function will be removed in tqdm==5.0.0
Please use `tqdm.notebook.tqdm` instead of `tqdm.tqdm_notebook`


In [6]:
# check if the 3D parameter space is been traversed or not 
do_check = False
if do_check:
    t_headle = '(.*?).pickle'
    t_path = os.listdir(os.path.join(PWD, job_dir))
    filename_list = [filename for filename in os.listdir(os.path.join(PWD, job_dir)) 
                     if re.match(t_headle, filename) is not None]
    ttheta = []
    tphi = []
    tpsi = []
    for i0, tname in enumerate(tqdm_notebook(filename_list[:])):
        tpath = os.path.join(PWD, job_dir, tname)
        with open(tpath, 'rb') as handle:
            tpick = pickle.load(handle)
        ttheta.append(tpick['Table_theta'])
        tphi.append(tpick['Table_phi'])
        tpsi.append(tpick['Table_psi'])

    ttheta, tphi, tpsi = np.hstack(ttheta), np.hstack(tphi), np.hstack(tpsi)
    from evtk.hl import pointsToVTK
    vtu_name = '/home/zhangji/check_th_ph_ps_%s' % job_dir
    pointsToVTK(vtu_name, 
                ttheta, tphi, tpsi, 
                data={'th_ph_ps': ttheta})
    print('save theta_phi_psi infomation to %s' % vtu_name)

In [7]:
# sort phase map of theta-phi using the name beging with pick frequience
importlib.reload(spf_tb)
do_sort = True

if do_sort:
    # clear dir
    dirpath = os.path.join(PWD, job_dir, 'th_ph_fft')
    if os.path.exists(dirpath) and os.path.isdir(dirpath):
        import shutil
        shutil.rmtree(dirpath)
        print('remove folder %s' % dirpath)
    os.makedirs(dirpath)
    print('make folder %s' % dirpath)

    for tname in tqdm_notebook(filename_list[:]):
        tpath = os.path.join(PWD, job_dir, tname)
        with open(tpath, 'rb') as handle:
            tpick = pickle.load(handle)
        Table_t = tpick['Table_t']
        Table_dt = tpick['Table_dt']
        Table_X = tpick['Table_X']
        Table_P = tpick['Table_P']
        Table_P2 = tpick['Table_P2']
        Table_theta = tpick['Table_theta']
        Table_phi = tpick['Table_phi']
        Table_psi = tpick['Table_psi']
        Table_eta = tpick['Table_eta']

        tmin = np.max((0, Table_t.max() - 1000))
        idx = Table_t > tmin    
        freq_pk = spf_tb.get_major_fre(Table_t[idx], Table_theta[idx])
        idx = Table_t > (Table_t.max() - 1 / freq_pk * 10)
        freq_pk = spf_tb.get_major_fre(Table_t[idx], Table_theta[idx])
        save_name = 'fre%.5f_%s.jpg' % (freq_pk, os.path.splitext(os.path.basename(tname))[0])
        fig = spf_tb.light_save_theta_phi(os.path.join(dirpath, save_name), 
                                    Table_t[idx], Table_dt[idx], Table_X[idx], Table_P[idx], Table_P2[idx], 
                                    Table_theta[idx], Table_phi[idx], Table_psi[idx], Table_eta[idx])
        plt.close(fig)


make folder /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/ecoC01B05_wt0.3_psi-0a/th_ph_fft
/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:15: TqdmDeprecationWarning: This function will be removed in tqdm==5.0.0
Please use `tqdm.notebook.tqdm` instead of `tqdm.tqdm_notebook`
  from ipykernel import kernelapp as app


In [127]:
importlib.reload(spf_tb)
theta, phi = 0.286, 2.713
theta, phi = 0.286, 2.856

tpick, _ = spf_tb.load_table_date_pickle(job_dir, theta, phi)
Table_t = tpick['Table_t']
Table_dt = tpick['Table_dt']
Table_X = tpick['Table_X']
Table_P = tpick['Table_P']
Table_P2 = tpick['Table_P2']
Table_theta = tpick['Table_theta']
Table_phi = tpick['Table_phi']
Table_psi = tpick['Table_psi']
Table_eta = tpick['Table_eta']
print('-ini_theta %f -ini_phi %f -ini_psi %f' % 
      (tpick['Table_theta'][0], tpick['Table_phi'][0], tpick['Table_psi'][0]))

idx = Table_t > np.max((0, Table_t.max() - 1000))    
freq_pk = spf_tb.get_major_fre(Table_t[idx], Table_theta[idx])
idx = Table_t > (Table_t.max() - 1 / freq_pk * 10)
spf_tb.show_table_result(Table_t[idx], Table_dt[idx], Table_X[idx], Table_P[idx], Table_P2[idx], 
                         Table_theta[idx], Table_phi[idx], Table_psi[idx], Table_eta[idx])
spf_tb.show_theta_phi(Table_t[idx], Table_dt[idx], Table_X[idx], Table_P[idx], Table_P2[idx], 
                      Table_theta[idx], Table_phi[idx], Table_psi[idx], Table_eta[idx], show_back_direction=0)
spf_tb.show_theta_phi_psi_eta(Table_t[idx], Table_dt[idx], Table_X[idx], Table_P[idx], Table_P2[idx], 
                              Table_theta[idx], Table_phi[idx], Table_psi[idx], Table_eta[idx])
spf_tb.show_center_X(Table_t[idx], Table_dt[idx], Table_X[idx], Table_P[idx], Table_P2[idx], 
                     Table_theta[idx], Table_phi[idx], Table_psi[idx], Table_eta[idx], 
                     table_name=table_name)


-ini_theta 0.285599 -ini_phi 2.855993 -ini_psi 0.000000
/home/zhangji/stokes_flow_master/codeStore/support_fun_table.py:615: UserWarning: This figure includes Axes that are not compatible with tight_layout, so results might be incorrect.
  plt.tight_layout()
Out[127]:
True

In [9]:
with pd.option_context('display.max_rows', 100, 'display.max_columns', 100):
    display(data.theta_max_fre)


ini_phi 0.000 0.143 0.286 0.428 0.571 0.714 0.857 1.000 1.142 1.285 1.428 1.571 1.714 1.856 1.999 2.142 2.285 2.428 2.570 2.713 2.856 2.999 3.142 3.284 3.427 3.570 3.713 3.856 3.998 4.141 4.284 4.427 4.570 4.712 4.855 4.998 5.141 5.284 5.426 5.569 5.712 5.855 5.998 6.140 6.283
ini_theta
0.000 0.016000 0.016000 0.016000 0.016000 0.016000 0.016000 0.016000 0.016000 0.016000 0.016000 0.016000 0.016000 0.018999 0.018999 0.018999 0.018999 0.018999 0.018999 0.018999 0.018999 0.018999 0.018999 0.018999 0.018999 0.018999 0.018999 0.018999 0.018999 0.018999 0.018999 0.018999 0.018999 0.018999 0.016000 0.016000 0.016000 0.016000 0.016000 0.016000 0.016000 0.016000 0.016000 0.016000 0.016000 0.016000
0.143 0.015999 0.014998 0.014999 0.015999 0.015999 0.014999 0.015998 0.015000 0.016000 0.016000 0.014999 0.016000 0.015997 0.015998 0.015998 0.015998 0.014999 0.018998 0.014999 0.020001 0.015998 0.018997 0.018997 0.018998 0.018998 0.019000 0.018999 0.019000 0.018999 0.018998 0.018999 0.018998 0.018998 0.018999 0.019000 0.018998 0.018998 0.018998 0.018999 0.014998 0.018999 0.014999 0.015998 0.015998 0.015999
0.286 0.014998 0.014999 0.015999 0.014998 0.016000 0.015998 0.015001 0.015999 0.016000 0.016000 0.015998 0.015997 0.015998 0.015998 0.015997 0.015999 0.018999 0.019998 0.019000 0.015000 0.014998 0.020001 0.018999 0.018999 0.018999 0.018998 0.018997 0.018999 0.019998 0.018999 0.018998 0.019999 0.018999 0.019998 0.019000 0.018999 0.018998 0.018998 0.018998 0.014999 0.015000 0.016000 0.015998 0.015998 0.014999
0.428 0.015000 0.015997 0.015998 0.015999 0.015998 0.015997 0.019999 0.014999 0.015999 0.015999 0.015998 0.015998 0.015999 0.014998 0.019001 0.018999 0.018998 0.015998 0.015000 0.014999 0.019997 0.019002 0.019000 0.019000 0.018998 0.018997 0.019000 0.019999 0.018999 0.015998 0.016000 0.015999 0.015998 0.015998 0.015998 0.020002 0.018998 0.019998 0.018998 0.019000 0.014999 0.016000 0.015999 0.015998 0.015001
0.571 0.015999 0.016000 0.015999 0.016000 0.015999 0.020000 0.015998 0.015999 0.015999 0.016000 0.016000 0.019001 0.018998 0.018998 0.018998 0.019000 0.015001 0.019000 0.018998 0.014998 0.019000 0.016002 0.019000 0.018998 0.018999 0.019000 0.018998 0.016000 0.016001 0.015999 0.014998 0.014999 0.015000 0.015998 0.015000 0.015002 0.015999 0.019300 0.019999 0.019001 0.014999 0.019998 0.018998 0.015999 0.015999
0.714 0.015997 0.015998 0.015999 0.020000 0.015998 0.015999 0.015997 0.014999 0.015999 0.019002 0.019001 0.018998 0.018999 0.015999 0.015998 0.018998 0.014999 0.015001 0.015999 0.014998 0.019999 0.016001 0.018998 0.018998 0.018998 0.019000 0.015999 0.015998 0.014999 0.016000 0.016000 0.015000 0.015998 0.015999 0.015999 0.015998 0.015999 0.015001 0.019999 0.018999 0.018998 0.014999 0.014999 0.015998 0.015999
0.857 0.015999 0.014999 0.014999 0.019999 0.016000 0.015998 0.014999 0.019001 0.019001 0.015998 0.015999 0.019999 0.019000 0.014999 0.015001 0.019000 0.015999 0.015998 0.015999 0.018999 0.019000 0.014998 0.019000 0.018998 0.018998 0.016000 0.016001 0.015998 0.016000 0.015998 0.015999 0.016000 0.015999 0.016002 0.015998 0.016000 0.015999 0.016000 0.016000 0.018999 0.019001 0.014999 0.018999 0.015999 0.015997
1.000 0.016000 0.016002 0.018999 0.015998 0.015998 0.015999 0.016000 0.015998 0.020001 0.014997 0.018999 0.018999 0.018998 0.018999 0.014997 0.019997 0.019000 0.015998 0.015003 0.019998 0.015000 0.015999 0.020000 0.020000 0.015999 0.016000 0.016000 0.014999 0.015997 0.015998 0.015999 0.015999 0.015999 0.015998 0.015999 0.015999 0.015998 0.015998 0.015998 0.015998 0.018999 0.018999 0.018998 0.018999 0.016001
1.142 0.016000 0.018999 0.014998 0.015998 0.015998 0.015999 0.018999 0.014999 0.019000 0.016000 0.015998 0.018998 0.018998 0.014999 0.018998 0.018999 0.018998 0.019998 0.015999 0.019999 0.014999 0.018999 0.018999 0.019998 0.014998 0.015998 0.015999 0.015998 0.015999 0.016000 0.015998 0.015000 0.014999 0.015000 0.016000 0.015999 0.016000 0.016001 0.016000 0.015999 0.015000 0.019998 0.014998 0.018998 0.016000
1.285 0.015999 0.019000 0.015000 0.016001 0.018999 0.019000 0.015999 0.015001 0.019998 0.018998 0.018998 0.015999 0.015997 0.018999 0.014998 0.018998 0.014999 0.015997 0.018999 0.018998 0.018999 0.018999 0.018997 0.018998 0.015000 0.016002 0.015998 0.015998 0.014999 0.014998 0.015998 0.015998 0.016001 0.016002 0.015999 0.016000 0.020000 0.018997 0.018998 0.019000 0.015997 0.018999 0.018998 0.018998 0.016001
1.428 0.015998 0.014998 0.018998 0.019000 0.018999 0.018998 0.015997 0.014999 0.016000 0.018999 0.015000 0.016001 0.015003 0.015999 0.018999 0.018999 0.015997 0.014999 0.019002 0.015999 0.016001 0.014999 0.019998 0.015999 0.014999 0.015999 0.015999 0.015998 0.019000 0.018999 0.018999 0.018998 0.018998 0.019999 0.019000 0.018999 0.018998 0.018998 0.019001 0.020000 0.018999 0.018998 0.018998 0.014998 0.015999
1.571 0.020000 0.015998 0.019000 0.018999 0.015997 0.015998 0.016000 0.018998 0.019000 0.019001 0.020554 0.077738 0.020524 0.021546 0.019000 0.015003 0.014999 0.019998 0.015998 0.015000 0.016000 0.016001 0.018999 0.015998 0.016001 0.019001 0.019997 0.019000 0.018997 0.020001 0.019999 0.020000 0.019998 0.019998 0.020040 0.020204 0.020226 0.019391 0.019636 0.018998 0.020001 0.019002 0.019000 0.014999 0.019999
1.714 0.018998 0.015999 0.018999 0.019999 0.019000 0.018999 0.019998 0.014998 0.014997 0.014999 0.019998 0.018997 0.020000 0.015999 0.018999 0.015998 0.015999 0.016001 0.014997 0.016001 0.018998 0.019998 0.019449 0.015000 0.018998 0.018999 0.019000 0.019998 0.020068 0.018998 0.019000 0.019002 0.018998 0.018998 0.019000 0.018999 0.018998 0.019999 0.018999 0.019000 0.018998 0.014998 0.015000 0.015001 0.018997
1.856 0.015998 0.018998 0.016000 0.019998 0.015000 0.019002 0.019001 0.016000 0.014999 0.019000 0.016000 0.015999 0.015002 0.014998 0.019000 0.014997 0.015997 0.016001 0.018998 0.019000 0.019000 0.014997 0.019000 0.018998 0.015998 0.018998 0.015001 0.014999 0.018998 0.019000 0.015001 0.014998 0.015000 0.014999 0.015000 0.015000 0.015002 0.015001 0.015000 0.014998 0.015001 0.015000 0.014999 0.015001 0.015998
1.999 0.015001 0.018997 0.018999 0.018998 0.014998 0.018998 0.019000 0.015999 0.018999 0.015999 0.016000 0.015998 0.014998 0.016001 0.015999 0.015999 0.016001 0.019999 0.019000 0.014999 0.018999 0.018997 0.016000 0.018999 0.014999 0.018998 0.018999 0.014999 0.014998 0.015001 0.014999 0.014999 0.014998 0.014999 0.014998 0.014998 0.014999 0.015000 0.015002 0.014998 0.014998 0.014999 0.014999 0.018998 0.014999
2.142 0.015999 0.015998 0.018999 0.014999 0.020000 0.014999 0.020000 0.018997 0.014998 0.018997 0.016000 0.016000 0.016001 0.019000 0.016002 0.020000 0.018999 0.015001 0.015000 0.018997 0.018999 0.015999 0.015998 0.015997 0.018998 0.015999 0.018998 0.019000 0.014999 0.015000 0.015000 0.014999 0.014998 0.014998 0.014998 0.014998 0.014998 0.014998 0.014998 0.014998 0.014999 0.015001 0.015001 0.018998 0.016000
2.285 0.016000 0.015998 0.018999 0.019998 0.019000 0.018998 0.014999 0.016000 0.015998 0.018997 0.020001 0.015998 0.014998 0.019001 0.018998 0.015001 0.015002 0.015000 0.019001 0.018998 0.014999 0.019002 0.019999 0.015999 0.018998 0.015998 0.016000 0.018997 0.018999 0.014999 0.014999 0.014999 0.014998 0.014998 0.014999 0.014998 0.014999 0.014998 0.014998 0.014998 0.015000 0.015000 0.018997 0.018998 0.016000
2.428 0.015998 0.015998 0.018997 0.018999 0.015998 0.015999 0.020000 0.016001 0.015999 0.018998 0.018999 0.018999 0.019000 0.015001 0.014999 0.015001 0.014999 0.018998 0.018999 0.015998 0.018998 0.018998 0.019001 0.015998 0.018997 0.018999 0.015998 0.019886 0.018998 0.018999 0.014998 0.014998 0.014998 0.014999 0.014998 0.014998 0.014998 0.014999 0.015000 0.015000 0.014999 0.015000 0.019000 0.018999 0.015998
2.570 0.015999 0.015999 0.019267 0.019999 0.015999 0.014999 0.014998 0.018999 0.018998 0.018998 0.014999 0.014999 0.015000 0.014999 0.014998 0.019934 0.018999 0.019000 0.015998 0.019000 0.018998 0.018997 0.018998 0.015997 0.015998 0.018998 0.015997 0.016001 0.018999 0.015001 0.019000 0.015002 0.014998 0.014999 0.014999 0.014998 0.014998 0.014999 0.014998 0.015000 0.014998 0.019000 0.018999 0.018999 0.015998
2.713 0.015999 0.015999 0.015998 0.018998 0.019999 0.015998 0.018999 0.014999 0.015000 0.014999 0.015000 0.014998 0.019000 0.018998 0.018997 0.018997 0.014999 0.019998 0.018999 0.018999 0.018998 0.018998 0.018999 0.018998 0.015999 0.019772 0.015999 0.015999 0.015999 0.018998 0.014999 0.014998 0.014999 0.014999 0.015001 0.014998 0.014999 0.014999 0.014999 0.018999 0.018998 0.018998 0.018998 0.018998 0.015998
2.856 0.015999 0.015998 0.015998 0.016000 0.016000 0.018999 0.014998 0.015000 0.014999 0.014999 0.018999 0.018997 0.018998 0.018998 0.018999 0.019998 0.018997 0.018999 0.019000 0.018999 0.018998 0.018998 0.018998 0.018998 0.015999 0.018999 0.019999 0.015999 0.014998 0.018999 0.019000 0.018999 0.018999 0.018999 0.018999 0.019997 0.018999 0.018998 0.018998 0.018999 0.019000 0.018999 0.018999 0.019998 0.015998
2.999 0.015998 0.015998 0.016000 0.015998 0.016000 0.018998 0.014999 0.014998 0.019000 0.019001 0.019366 0.018999 0.018998 0.018998 0.019000 0.018998 0.018999 0.018997 0.018998 0.018998 0.018999 0.018997 0.018998 0.019000 0.015998 0.018999 0.018998 0.015998 0.015998 0.015998 0.015998 0.019000 0.018999 0.018999 0.018999 0.019999 0.019999 0.018999 0.018998 0.019000 0.018999 0.018999 0.018998 0.018999 0.015998
3.142 0.018998 0.018999 0.015998 0.018999 0.019999 0.019999 0.015998 0.015998 0.015000 0.015999 0.015000 0.014998 0.016002 0.018998 0.020000 0.019000 0.019998 0.018999 0.020000 0.019000 0.018998 0.018998 0.015999 0.016000 0.015997 0.014999 0.019998 0.014999 0.014999 0.018999 0.019997 0.018998 0.018998 0.018998 0.018998 0.018998 0.019999 0.018999 0.018999 0.018999 0.018998 0.018998 0.018998 0.018998 0.018998

In [10]:
# sort all frequrents
with np.printoptions(precision=10, suppress=True, threshold=1e10):
    print(np.flipud(np.sort(data.theta_max_fre.values.flatten())))


[0.0777377086 0.021545871  0.0205539128 0.0205237178 0.0202260978 0.0202041691
 0.020068157  0.0200398936 0.0200020064 0.0200011268 0.0200010413 0.0200008914
 0.0200006622 0.0200006497 0.0200005305 0.0200003946 0.0200003646 0.0200002551
 0.0200002478 0.0200002043 0.0200000967 0.0199999928 0.0199998808 0.019999853
 0.0199998021 0.0199997976 0.0199995746 0.0199995538 0.0199995208 0.0199995162
 0.0199994126 0.0199993753 0.0199993608 0.0199993011 0.0199992346 0.0199990943
 0.0199990696 0.0199990307 0.0199989908 0.0199989834 0.0199989563 0.0199989048
 0.0199988903 0.0199988792 0.0199988621 0.0199988555 0.0199988354 0.0199987273
 0.0199986557 0.0199986417 0.0199986122 0.0199985753 0.0199985417 0.0199985417
 0.0199984844 0.0199984522 0.0199984391 0.0199983997 0.0199983798 0.019998341
 0.0199982916 0.0199982361 0.0199982191 0.0199981962 0.0199981814 0.0199981538
 0.0199981249 0.0199980868 0.0199980675 0.0199980371 0.0199979786 0.0199979197
 0.0199979187 0.0199979039 0.0199977912 0.0199977868 0.0199976796 0.0199976329
 0.0199975547 0.0199974035 0.0199973804 0.0199973622 0.0199972828 0.0199969942
 0.0199339507 0.0198857965 0.0197720931 0.0196358703 0.0194488699 0.01939131
 0.0193657134 0.0192997062 0.0192670475 0.0190023982 0.0190023352 0.0190021896
 0.0190021613 0.0190021039 0.019002004  0.0190016577 0.0190014336 0.0190012728
 0.0190012025 0.0190010141 0.0190009285 0.0190008249 0.019000726  0.0190006856
 0.0190006687 0.0190006479 0.0190005761 0.0190005714 0.0190005594 0.0190005403
 0.0190005218 0.0190004791 0.019000477  0.0190004681 0.0190004321 0.0190004059
 0.0190003371 0.0190003047 0.019000299  0.0190002722 0.0190002417 0.0190002386
 0.0190002233 0.0190001904 0.0190001722 0.0190001296 0.0190001243 0.0190000963
 0.01900009   0.0190000774 0.0190000765 0.0190000651 0.0190000489 0.0190000376
 0.0190000308 0.0190000242 0.0190000027 0.018999968  0.0189999648 0.0189999538
 0.0189999459 0.0189999396 0.0189999115 0.01899991   0.0189998899 0.01899988
 0.0189998519 0.0189998464 0.0189998374 0.0189997997 0.018999786  0.0189997833
 0.0189997827 0.0189997693 0.0189997692 0.0189997487 0.0189997298 0.0189997236
 0.0189996876 0.0189996741 0.018999661  0.0189996578 0.0189996452 0.0189996382
 0.0189996309 0.0189996167 0.0189996132 0.0189995931 0.0189995588 0.0189995555
 0.0189995546 0.018999554  0.0189995465 0.0189995147 0.0189995036 0.0189995028
 0.0189994537 0.0189994534 0.0189994472 0.0189994457 0.0189994354 0.0189994343
 0.0189994315 0.0189994072 0.0189993907 0.0189993807 0.0189993669 0.0189993623
 0.0189993414 0.0189993353 0.0189993308 0.0189993245 0.0189993153 0.0189992979
 0.0189992965 0.018999284  0.0189992756 0.0189992753 0.0189992676 0.0189992639
 0.018999255  0.0189992533 0.0189992506 0.0189992444 0.0189992433 0.0189992338
 0.0189992248 0.0189992204 0.018999192  0.0189991743 0.0189991613 0.0189991561
 0.0189991514 0.0189991502 0.0189991491 0.0189991439 0.0189991436 0.0189991047
 0.0189990978 0.0189990868 0.0189990735 0.0189990709 0.0189990709 0.0189990709
 0.0189990709 0.0189990709 0.0189990709 0.0189990709 0.0189990709 0.0189990709
 0.0189990709 0.0189990709 0.0189990709 0.0189990709 0.0189990709 0.0189990709
 0.0189990709 0.0189990709 0.0189990709 0.0189990709 0.0189990709 0.0189990709
 0.0189990684 0.0189990595 0.018999048  0.0189990462 0.0189990459 0.0189990432
 0.0189990194 0.0189990158 0.0189990153 0.0189990067 0.0189989959 0.0189989723
 0.0189989633 0.0189989462 0.018998943  0.0189989365 0.0189989288 0.0189989269
 0.0189989172 0.0189989082 0.0189988997 0.0189988956 0.0189988766 0.0189988759
 0.0189988633 0.0189988577 0.0189988559 0.0189988349 0.0189988235 0.018998822
 0.0189987924 0.0189987902 0.0189987833 0.0189987815 0.0189987762 0.0189987663
 0.0189987452 0.0189987342 0.0189987252 0.0189987165 0.0189987124 0.0189987113
 0.0189986997 0.0189986985 0.018998692  0.0189986876 0.0189986789 0.0189986733
 0.0189986626 0.0189986551 0.0189986522 0.0189986521 0.0189986335 0.0189986224
 0.0189986191 0.0189986177 0.0189986148 0.0189985988 0.018998595  0.0189985946
 0.0189985916 0.0189985887 0.0189985695 0.018998566  0.0189985493 0.0189985472
 0.0189985445 0.0189985226 0.0189985164 0.0189985152 0.0189985137 0.0189984929
 0.0189984922 0.0189984861 0.0189984831 0.0189984767 0.0189984656 0.0189984576
 0.0189984534 0.0189984472 0.0189984352 0.0189984331 0.0189984312 0.0189984248
 0.0189984199 0.0189984198 0.0189984151 0.0189984096 0.0189984066 0.018998403
 0.0189984018 0.018998401  0.0189983995 0.0189983812 0.0189983673 0.018998358
 0.0189983354 0.0189983162 0.0189983122 0.018998305  0.0189982931 0.018998291
 0.0189982887 0.0189982877 0.0189982855 0.0189982562 0.0189982326 0.0189982311
 0.0189982238 0.0189982162 0.0189982125 0.0189981962 0.0189981834 0.0189981813
 0.01899818   0.0189981794 0.018998173  0.0189981644 0.0189981603 0.0189981498
 0.0189981384 0.0189981383 0.018998135  0.0189981237 0.0189981161 0.018998105
 0.0189981045 0.0189980899 0.0189980865 0.0189980785 0.0189980758 0.0189980757
 0.0189980687 0.0189980662 0.0189980452 0.0189980425 0.018998031  0.0189980285
 0.0189980253 0.0189979874 0.0189979865 0.0189979815 0.0189979809 0.0189979754
 0.018997975  0.0189979703 0.0189979656 0.0189979566 0.0189979387 0.0189979278
 0.0189979027 0.0189978789 0.0189978729 0.0189978704 0.0189978698 0.0189978675
 0.0189978502 0.0189978086 0.0189978052 0.0189977844 0.018997781  0.0189977668
 0.0189977643 0.0189977611 0.0189977532 0.0189977475 0.0189977464 0.0189977405
 0.0189977214 0.0189977206 0.0189977192 0.0189977186 0.0189977096 0.0189977094
 0.0189977081 0.0189977045 0.0189976964 0.0189976838 0.0189976795 0.0189976736
 0.0189976626 0.0189976606 0.018997657  0.0189976531 0.0189976417 0.0189976402
 0.0189976259 0.0189976251 0.0189976251 0.0189976172 0.0189976024 0.0189975946
 0.0189975907 0.018997586  0.0189975734 0.0189975684 0.0189975682 0.0189975665
 0.0189975499 0.0189975476 0.0189975432 0.0189975427 0.0189975189 0.0189975152
 0.0189975126 0.018997509  0.0189974991 0.0189974768 0.0189974752 0.0189974687
 0.0189974496 0.0189974374 0.0189973993 0.0189973952 0.0189973724 0.018997316
 0.0189973009 0.018997294  0.0189972858 0.0189972835 0.0189972466 0.0189972461
 0.0189972105 0.0189971821 0.0189971093 0.0189970862 0.0189970736 0.0189970465
 0.0189970185 0.0189970115 0.0189970089 0.0189968764 0.0160023462 0.0160018564
 0.0160017769 0.0160017385 0.0160017    0.0160016149 0.0160015793 0.0160014895
 0.0160014751 0.0160014287 0.0160012991 0.0160012573 0.0160012196 0.01600118
 0.016001154  0.016001115  0.0160010037 0.0160009528 0.0160008586 0.0160007979
 0.0160007912 0.0160007867 0.0160007262 0.016000627  0.0160006093 0.0160005872
 0.0160005539 0.0160004746 0.0160004731 0.0160004187 0.016000401  0.0160003516
 0.0160003329 0.0160003209 0.0160003209 0.0160003209 0.0160003209 0.0160003209
 0.0160003209 0.0160003209 0.0160003209 0.0160003209 0.0160003209 0.0160003209
 0.0160003209 0.0160003209 0.0160003209 0.0160003209 0.0160003209 0.0160003209
 0.0160003209 0.0160003209 0.0160003209 0.0160003209 0.0160003209 0.0160003209
 0.0160003209 0.0160002909 0.0160002691 0.0160002359 0.0160002318 0.016000225
 0.016000207  0.016000207  0.0160001957 0.0160001855 0.0160001738 0.0160001727
 0.0160001539 0.0160001279 0.0160000968 0.0160000812 0.0160000494 0.0159999916
 0.0159999877 0.0159999819 0.0159999706 0.0159999699 0.0159999576 0.0159999574
 0.0159999569 0.0159999467 0.015999901  0.0159998956 0.0159998915 0.0159998854
 0.0159998544 0.0159998145 0.0159998144 0.0159997843 0.0159997614 0.0159997323
 0.0159997094 0.0159996995 0.0159996192 0.0159996073 0.0159995982 0.0159995807
 0.0159995704 0.0159995416 0.0159995413 0.0159995251 0.0159995164 0.0159995102
 0.0159995036 0.0159995014 0.0159994959 0.0159994842 0.0159994783 0.0159994656
 0.0159994576 0.0159994526 0.0159994516 0.0159994334 0.0159994227 0.0159994149
 0.0159994062 0.0159993846 0.0159993656 0.0159993634 0.0159993316 0.0159993311
 0.0159993009 0.0159992733 0.0159992458 0.0159992434 0.015999225  0.0159992059
 0.015999184  0.01599918   0.015999165  0.0159991553 0.0159991534 0.0159991456
 0.0159991362 0.0159991296 0.0159991226 0.0159991203 0.0159991151 0.0159991149
 0.0159991038 0.0159991026 0.0159990899 0.0159990779 0.0159990706 0.0159990519
 0.0159990513 0.0159990143 0.0159990037 0.015998993  0.0159989891 0.0159989882
 0.0159989746 0.015998968  0.0159989549 0.0159989528 0.015998952  0.015998929
 0.0159989282 0.0159989209 0.0159989123 0.0159988888 0.0159988839 0.0159988765
 0.0159988532 0.0159988458 0.0159988395 0.01599883   0.0159988171 0.0159988063
 0.0159987921 0.0159987626 0.0159987493 0.0159987446 0.0159987328 0.0159987146
 0.0159987062 0.0159986922 0.0159986919 0.015998684  0.0159986789 0.0159986467
 0.0159986456 0.0159986383 0.0159986331 0.015998613  0.0159986104 0.0159985885
 0.0159985803 0.015998568  0.0159985651 0.0159985449 0.0159985446 0.0159985339
 0.0159985181 0.0159985131 0.0159985085 0.015998505  0.0159984944 0.0159984941
 0.0159984902 0.0159984895 0.0159984753 0.0159984649 0.015998431  0.0159984107
 0.015998387  0.0159983621 0.0159983603 0.015998348  0.0159983438 0.0159983308
 0.0159983151 0.015998311  0.0159982993 0.0159982823 0.0159982775 0.0159982604
 0.0159982594 0.0159982474 0.0159982461 0.0159982395 0.0159982394 0.0159982354
 0.0159982353 0.015998228  0.0159982279 0.0159982218 0.0159982213 0.015998221
 0.0159982043 0.0159982022 0.0159981999 0.0159981916 0.0159981835 0.0159981831
 0.0159981687 0.0159981659 0.0159981585 0.0159981335 0.0159981233 0.0159981095
 0.0159980974 0.0159980875 0.0159980778 0.0159980738 0.0159980536 0.0159980507
 0.0159980359 0.0159980186 0.0159980043 0.0159979868 0.0159979863 0.0159979784
 0.0159979541 0.0159979477 0.0159979382 0.0159979318 0.0159979304 0.0159979103
 0.0159979064 0.0159979007 0.0159978989 0.0159978988 0.01599789   0.0159978698
 0.0159978663 0.0159978654 0.0159978636 0.0159978592 0.0159978454 0.0159978381
 0.0159978272 0.0159978267 0.0159978265 0.0159978221 0.015997805  0.0159977964
 0.0159977916 0.0159977785 0.0159977696 0.0159977645 0.0159977607 0.0159977391
 0.0159977112 0.0159977042 0.0159977004 0.015997677  0.0159976477 0.0159976474
 0.0159976324 0.0159976314 0.0159976298 0.0159976236 0.0159976149 0.0159975794
 0.0159975554 0.0159975332 0.015997523  0.0159975205 0.0159975159 0.0159974807
 0.0159974648 0.0159974424 0.0159974101 0.0159974069 0.0159973928 0.0159973626
 0.0159973614 0.0159973567 0.015997355  0.0159973255 0.0159972616 0.0159972536
 0.0159971939 0.0159971668 0.0159971409 0.0159970997 0.0159970237 0.0159970101
 0.015997001  0.0150028318 0.0150026816 0.0150025622 0.0150022174 0.0150021572
 0.0150021349 0.015001996  0.0150016889 0.0150015431 0.0150014941 0.0150014192
 0.0150014044 0.0150013458 0.0150013331 0.0150012412 0.015001193  0.0150010204
 0.0150009765 0.0150009616 0.0150009319 0.0150008962 0.0150008716 0.0150008645
 0.0150007728 0.0150007692 0.0150007495 0.0150007094 0.0150007026 0.0150006541
 0.0150006244 0.0150005664 0.015000555  0.0150004225 0.0150004111 0.0150003976
 0.0150003653 0.0150003374 0.0150002468 0.0150002467 0.015000239  0.0150001986
 0.0150001709 0.0150001663 0.0150001654 0.0150001544 0.0150001468 0.0150001316
 0.0150000992 0.015000084  0.0150000814 0.0150000723 0.0149999863 0.0149999356
 0.0149999146 0.0149998914 0.0149998804 0.014999862  0.0149998616 0.0149998324
 0.0149997875 0.0149997656 0.014999701  0.0149996869 0.0149996829 0.0149996811
 0.0149995883 0.0149995718 0.0149995673 0.014999555  0.0149995493 0.0149995162
 0.014999511  0.0149995051 0.0149994688 0.0149994684 0.0149994547 0.0149994328
 0.0149994315 0.0149994292 0.0149994153 0.014999391  0.014999363  0.0149993551
 0.0149993536 0.0149993485 0.0149993476 0.0149993243 0.0149992984 0.0149992404
 0.0149992305 0.0149992248 0.0149992165 0.014999216  0.0149992067 0.0149992027
 0.014999161  0.0149991555 0.0149991487 0.0149991409 0.0149991296 0.0149990883
 0.0149990861 0.0149990678 0.0149990676 0.0149990611 0.0149990601 0.0149990448
 0.0149990424 0.0149990294 0.014999027  0.0149990258 0.014999023  0.0149990103
 0.0149990058 0.014998992  0.0149989888 0.0149989664 0.0149989556 0.0149989457
 0.014998938  0.0149989256 0.0149989229 0.0149989229 0.0149988991 0.014998892
 0.014998871  0.0149988625 0.0149988205 0.0149988128 0.0149988055 0.0149987961
 0.0149987935 0.0149987905 0.014998772  0.0149987665 0.0149987503 0.0149987398
 0.0149987373 0.0149987282 0.0149987188 0.0149987087 0.0149987082 0.0149987005
 0.0149986904 0.0149986837 0.0149986801 0.0149986461 0.0149986395 0.0149986265
 0.0149986249 0.0149986209 0.0149986033 0.0149986026 0.0149985862 0.0149985862
 0.0149985854 0.014998558  0.0149985528 0.0149985496 0.0149985391 0.0149985362
 0.0149985361 0.0149985327 0.0149985264 0.014998488  0.0149984811 0.0149984491
 0.0149984471 0.0149984434 0.0149984409 0.0149984214 0.0149983893 0.0149983856
 0.0149983794 0.0149983792 0.0149983697 0.0149983489 0.0149983486 0.0149983445
 0.0149983262 0.0149983201 0.0149983135 0.0149983097 0.0149983053 0.014998282
 0.0149982807 0.0149982753 0.0149982666 0.0149982295 0.0149982228 0.0149981895
 0.0149981768 0.0149981763 0.014998172  0.0149981659 0.0149981528 0.0149981412
 0.0149981184 0.0149981007 0.0149980649 0.0149980625 0.0149980544 0.0149980529
 0.0149980234 0.0149980181 0.0149980118 0.0149980024 0.0149979857 0.0149979268
 0.0149979252 0.0149979163 0.0149979051 0.0149978988 0.0149978909 0.0149978485
 0.0149978024 0.0149977909 0.0149977653 0.0149977373 0.0149977301 0.014997717
 0.0149977123 0.0149976942 0.0149976612 0.0149976587 0.014997654  0.014997595
 0.0149975903 0.0149975749 0.0149975084 0.0149974872 0.014997475  0.0149974368
 0.014997407  0.0149972753 0.0149972707]

In [11]:
spf_tb.show_traj_phase_map_fre(theta_max_fre)
# spf_tb.show_traj_phase_map_fre(phi_max_fre)
# spf_tb.show_traj_phase_map_fre(psi_max_fre)
# spf_tb.show_traj_phase_map_fre(eta_max_fre)


Out[11]:
True

In [6]:
# put images with same frequence into a subdirect
importlib.reload(spf_tb)
def t_show_idx(iidx):
    theta = type_fre.index.values[iidx[0][0]]
    phi = type_fre.columns.values[iidx[1][0]]
    print(theta, phi)
    tipical_th_ph_list.append((theta, phi))
    spf_tb.show_pickle_results(job_dir, theta, phi, table_name)
    return True

def t_show_idx_list(iidx, nshow=5, Table_t_range1=np.array((0, np.inf)), Table_t_range2=np.array((0, np.inf))):
    nshow = int(np.min((nshow, iidx[0].size)))
    tidx = np.random.choice(iidx[0].size, nshow, replace=False)
    theta = type_fre.index.values[iidx[0][tidx]]
    phi = type_fre.columns.values[iidx[1][tidx]]
    theta_phi_list = np.vstack((theta, phi)).T
#     spf_tb.show_table_theta_phi_list(theta_phi_list, job_dir, Table_t_range=Table_t_range1, figsize=np.array((20, 20)), dpi=100)
    spf_tb.show_table_result_list(theta_phi_list, job_dir, Table_t_range=Table_t_range2, figsize=np.array((16, 9)), dpi=100)
    return True

tfre = theta_max_fre.copy()
check_fre_list = [0.0150, 0.0160, 0.0190]
atol_fre_list =  [0.0002, 0.0002, 0.0002]
Table_t_range1 = np.array((0, 1000))
Table_t_range2 = np.array((4500, np.inf))
nshow = np.inf

tipical_th_ph_list = []
type_fre = tfre.copy()
type_fre.iloc[:, :] = len(check_fre_list) 
for i0, (check_fre, atol_fre) in enumerate(zip(check_fre_list, atol_fre_list)):
    use_idx = np.isclose(tfre, check_fre, rtol=0, atol=atol_fre)
    type_fre.iloc[use_idx] = i0
    iidx = np.where(use_idx)
#     t_show_idx(iidx)
    t_show_idx_list(iidx, nshow=nshow, Table_t_range1=Table_t_range1, Table_t_range2=Table_t_range2)

# plot one of the remaind cases
if np.any(type_fre.values == len(check_fre_list)):
    iidx = np.where(type_fre.values == len(check_fre_list))
#     t_show_idx(iidx)
    t_show_idx_list(iidx, nshow=nshow, Table_t_range1=Table_t_range1, Table_t_range2=Table_t_range2)

# spf_tb.show_traj_phase_map_type(type_fre)
# spf_tb.save_separate_angleList_fft(job_dir, tfre, check_fre_list, atol_fre_list)



In [10]:
Table_t_range = np.array((4500, np.inf))
figsize = np.array((16, 9))
dpi = 100

label_list = np.arange(len(tipical_th_ph_list))
spf_tb.show_table_theta_phi_psi_fft_list(tipical_th_ph_list, job_dir, label_list=label_list, figsize=figsize, dpi=dpi)
spf_tb.show_table_result_list(tipical_th_ph_list, job_dir, label_list=label_list, Table_t_range=Table_t_range,
                              figsize=figsize, dpi=dpi)


0.143 0.143
0.0 0.0
0.0 1.714
0.143 2.713
Out[10]:
True

In [ ]:
# create phase map
importlib.reload(spf_tb)
def tget_ax0():
    n_xticks = 32
    xticks = np.arange(n_xticks)
    fig = plt.figure(figsize=(20, 20))
    fig.patch.set_facecolor('white')
    axs = []
    axs.append(fig.add_subplot(221, polar=True))
    axs.append(fig.add_subplot(222, polar=True))
    axs.append(fig.add_subplot(223, polar=True))
    axs.append(fig.add_subplot(224, polar=True))
    for ax0 in axs:
        ax0.set_xticks(xticks / n_xticks * 2 * np.pi)
        ax0.set_xticklabels(['$\dfrac{%d}{%d}2\pi$' % (i0, n_xticks) for i0 in xticks])
        ax0.set_yticklabels([])
        ax0.set_ylim(0, np.pi)
    plt.tight_layout()
    return fig, axs

check_fre_list = [1.000, 0.0220, 1.0000, 0.0540]
atol_list =      [0.004, 0.0005, 0.0005, 0.0005]
color_list =     ['b',   'g',    'r',    'c',   'm', 'y', 'k']
psi_lim_fct = 20
resampling_fct = 10

data0['use_max_fre'] = data0.theta_max_fre
case_path_list = spf_tb.separate_fre_path(check_fre_list, atol_list, data0, pickle_path_list)
for idx, psi_lim1 in enumerate(np.linspace(0, 2 * np.pi, psi_lim_fct * 16, 
                                           endpoint=False)[::psi_lim_fct]):
    fig, (ax0, ax1, ax2, ax3) = tget_ax0()
    ax_list = [ax0, ax0, ax1, ax2, ax3]
    psi_lim = (psi_lim1, psi_lim1 + 2 * np.pi / (psi_lim_fct * 16))
    desc = '$\psi\in[%.3f\pi, %.3f\pi)$' % ((psi_lim[0] / np.pi), (psi_lim[1] / np.pi))
    fig.suptitle(desc, fontsize=fontsize*0.8)
    for check_fre, case_path, color, axi in zip(check_fre_list, case_path_list, color_list, ax_list):
        thandle = '%f' % check_fre
        spf_tb.draw_phase_map_theta(case_path, color, psi_lim, axs=(axi, ax_list[-1]), thandle=thandle, 
                                    resampling=True, resampling_fct=resampling_fct)
    tdir = os.path.join(PWD, job_dir, 'phase_mape_fre')
    if not os.path.exists(tdir):
        os.makedirs(tdir)
    figname = os.path.join(tdir, '%04d.png' % (idx))
    fig.savefig(os.path.join(tdir, figname))
    print('save to %s' % figname)
    plt.close(fig)


/home/zhangji/stokes_flow_master/codeStore/support_fun_table.py:12: UserWarning: matplotlib.pyplot as already been imported, this call will have no effect.
  matplotlib.use('agg')
0th frequence range: (0.996000, 1.004000)
1th frequence range: (0.021500, 0.022500)
2th frequence range: (0.999500, 1.000500)
3th frequence range: (0.053500, 0.054500)
tmax_fre=0.048002, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.639_ph0.401_ps0.000_D20190714_T225427.pickle
tmax_fre=0.052003, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th0.683_ph2.941_ps0.000_D20190715_T023809.pickle
tmax_fre=0.035997, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.639_ph1.738_ps0.000_D20190715_T020546.pickle
tmax_fre=0.052011, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.366_ph3.075_ps0.000_D20190715_T024550.pickle
tmax_fre=0.051998, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.229_ph3.208_ps0.000_D20190715_T025014.pickle
tmax_fre=0.036003, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.503_ph2.005_ps0.000_D20190715_T020546.pickle
tmax_fre=0.052012, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th2.322_ph3.476_ps0.000_D20190715_T031731.pickle
tmax_fre=0.052001, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th0.683_ph3.075_ps0.000_D20190715_T024550.pickle
tmax_fre=0.052001, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th2.322_ph3.208_ps0.000_D20190715_T025013.pickle
tmax_fre=0.051998, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.093_ph3.208_ps0.000_D20190715_T025013.pickle
tmax_fre=0.050005, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.639_ph0.000_ps0.000_D20190714_T225427.pickle
tmax_fre=0.052002, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.366_ph3.208_ps0.000_D20190715_T025014.pickle
tmax_fre=0.052001, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th0.820_ph3.075_ps0.000_D20190715_T024550.pickle
tmax_fre=0.051997, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th2.459_ph3.342_ps0.000_D20190715_T031151.pickle
tmax_fre=0.052005, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.093_ph2.941_ps0.000_D20190715_T023808.pickle
tmax_fre=0.050003, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th3.005_ph0.134_ps0.000_D20190714_T225427.pickle
tmax_fre=0.052011, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th2.185_ph3.342_ps0.000_D20190715_T031150.pickle
tmax_fre=0.052004, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.639_ph3.208_ps0.000_D20190715_T025013.pickle
tmax_fre=0.039005, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.639_ph4.011_ps0.000_D20190715_T032724.pickle
tmax_fre=0.049996, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.366_ph6.150_ps0.000_D20190715_T045619.pickle
tmax_fre=0.035999, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.639_ph1.069_ps0.000_D20190715_T005116.pickle
tmax_fre=0.052003, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th0.956_ph2.941_ps0.000_D20190715_T023809.pickle
tmax_fre=0.035999, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.639_ph1.604_ps0.000_D20190715_T020546.pickle
tmax_fre=0.035001, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.503_ph4.679_ps0.000_D20190715_T040314.pickle
tmax_fre=0.052007, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.503_ph3.075_ps0.000_D20190715_T024550.pickle
tmax_fre=0.035004, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.503_ph1.471_ps0.000_D20190715_T013943.pickle
tmax_fre=0.050013, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.229_ph6.150_ps0.000_D20190715_T045619.pickle
tmax_fre=0.037003, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.639_ph5.080_ps0.000_D20190715_T040605.pickle
tmax_fre=0.051999, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th0.137_ph3.075_ps0.000_D20190715_T024550.pickle
tmax_fre=0.049997, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th2.732_ph0.134_ps0.000_D20190714_T225427.pickle
tmax_fre=0.050005, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th0.956_ph0.000_ps0.000_D20190714_T225427.pickle
tmax_fre=0.048009, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.912_ph0.401_ps0.000_D20190714_T225427.pickle
tmax_fre=0.052011, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th2.459_ph3.208_ps0.000_D20190715_T025014.pickle
tmax_fre=0.035998, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.503_ph4.412_ps0.000_D20190715_T035348.pickle
tmax_fre=0.052006, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th2.868_ph3.476_ps0.000_D20190715_T031732.pickle
tmax_fre=0.037005, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.639_ph4.144_ps0.000_D20190715_T032725.pickle
tmax_fre=0.052001, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.912_ph3.208_ps0.000_D20190715_T025014.pickle
tmax_fre=0.051999, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th0.546_ph2.941_ps0.000_D20190715_T023808.pickle
tmax_fre=0.035998, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.503_ph1.203_ps0.000_D20190715_T011130.pickle
tmax_fre=0.036000, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.639_ph4.412_ps0.000_D20190715_T035348.pickle
tmax_fre=0.052007, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th3.005_ph3.208_ps0.000_D20190715_T025013.pickle
tmax_fre=0.052017, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th0.956_ph3.208_ps0.000_D20190715_T025013.pickle
tmax_fre=0.051997, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th2.732_ph3.342_ps0.000_D20190715_T031150.pickle
tmax_fre=0.036002, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.503_ph5.214_ps0.000_D20190715_T040610.pickle
tmax_fre=0.052003, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th0.956_ph3.075_ps0.000_D20190715_T024550.pickle
tmax_fre=0.035001, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.503_ph1.604_ps0.000_D20190715_T020546.pickle
tmax_fre=0.051999, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th3.005_ph3.476_ps0.000_D20190715_T031732.pickle
tmax_fre=0.052012, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th0.546_ph2.807_ps0.000_D20190715_T023653.pickle
tmax_fre=0.052001, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th0.820_ph2.941_ps0.000_D20190715_T023809.pickle
tmax_fre=0.052000, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th2.868_ph3.342_ps0.000_D20190715_T031151.pickle
tmax_fre=0.036002, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.639_ph4.813_ps0.000_D20190715_T040330.pickle
tmax_fre=0.036003, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.639_ph1.203_ps0.000_D20190715_T011131.pickle
tmax_fre=0.036007, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.503_ph2.139_ps0.000_D20190715_T021010.pickle
tmax_fre=0.051997, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th2.049_ph3.342_ps0.000_D20190715_T031151.pickle
tmax_fre=0.050010, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.912_ph0.000_ps0.000_D20190714_T225427.pickle
tmax_fre=0.036006, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.639_ph4.946_ps0.000_D20190715_T040521.pickle
tmax_fre=0.036000, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.639_ph4.545_ps0.000_D20190715_T040119.pickle
tmax_fre=0.051997, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th0.273_ph3.075_ps0.000_D20190715_T024550.pickle
tmax_fre=0.051997, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th0.273_ph2.941_ps0.000_D20190715_T023808.pickle
tmax_fre=0.036003, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.503_ph5.080_ps0.000_D20190715_T040604.pickle
tmax_fre=0.052000, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.912_ph3.342_ps0.000_D20190715_T031150.pickle
tmax_fre=0.036005, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.639_ph4.679_ps0.000_D20190715_T040314.pickle
tmax_fre=0.051997, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th0.410_ph2.807_ps0.000_D20190715_T142926.pickle
tmax_fre=0.035000, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.503_ph1.738_ps0.000_D20190715_T020547.pickle
tmax_fre=0.051999, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th0.410_ph2.941_ps0.000_D20190715_T023809.pickle
tmax_fre=0.051997, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th0.137_ph2.807_ps0.000_D20190715_T023653.pickle
tmax_fre=0.052001, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.776_ph3.342_ps0.000_D20190715_T031151.pickle
tmax_fre=0.036997, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.503_ph5.347_ps0.000_D20190715_T042036.pickle
tmax_fre=0.049998, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th0.820_ph6.016_ps0.000_D20190715_T045020.pickle
tmax_fre=0.051997, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th2.868_ph3.208_ps0.000_D20190715_T025013.pickle
tmax_fre=0.036998, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.503_ph4.278_ps0.000_D20190715_T033910.pickle
tmax_fre=0.045999, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th3.142_ph3.476_ps0.000_D20190715_T031731.pickle
tmax_fre=0.053009, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th3.142_ph0.267_ps0.000_D20190714_T225427.pickle
tmax_fre=0.051996, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.503_ph5.481_ps0.000_D20190715_T043702.pickle
tmax_fre=0.035999, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.639_ph1.471_ps0.000_D20190715_T013943.pickle
tmax_fre=0.052000, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.366_ph3.342_ps0.000_D20190715_T031151.pickle
tmax_fre=0.052004, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.503_ph3.208_ps0.000_D20190715_T025014.pickle
tmax_fre=0.052000, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th2.185_ph3.476_ps0.000_D20190715_T031731.pickle
tmax_fre=0.052003, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.776_ph3.208_ps0.000_D20190715_T025014.pickle
tmax_fre=0.051999, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.776_ph3.476_ps0.000_D20190715_T031732.pickle
tmax_fre=0.049998, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.639_ph0.267_ps0.000_D20190714_T225427.pickle
tmax_fre=0.052006, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.639_ph3.075_ps0.000_D20190715_T024550.pickle
tmax_fre=0.049996, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th0.956_ph6.283_ps0.000_D20190715_T045619.pickle
tmax_fre=0.036003, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.639_ph1.872_ps0.000_D20190715_T020547.pickle
tmax_fre=0.052001, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th3.005_ph3.342_ps0.000_D20190715_T031151.pickle
tmax_fre=0.038000, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.503_ph2.273_ps0.000_D20190715_T021007.pickle
tmax_fre=0.050002, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.776_ph0.267_ps0.000_D20190714_T225427.pickle
tmax_fre=0.050000, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.912_ph6.283_ps0.000_D20190715_T045619.pickle
tmax_fre=0.052012, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th0.546_ph3.075_ps0.000_D20190715_T024550.pickle
tmax_fre=0.051999, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.503_ph3.342_ps0.000_D20190715_T031150.pickle
tmax_fre=0.035999, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.503_ph4.545_ps0.000_D20190715_T040118.pickle
tmax_fre=0.051997, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th2.459_ph3.476_ps0.000_D20190715_T031731.pickle
tmax_fre=0.052011, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th2.049_ph3.476_ps0.000_D20190715_T031732.pickle
tmax_fre=0.034998, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.503_ph4.813_ps0.000_D20190715_T040331.pickle
tmax_fre=0.049999, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th3.142_ph3.208_ps0.000_D20190715_T025014.pickle
tmax_fre=0.048007, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.093_ph6.016_ps0.000_D20190715_T045021.pickle
tmax_fre=0.046996, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th0.683_ph2.807_ps0.000_D20190715_T023653.pickle
tmax_fre=0.035999, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.639_ph1.337_ps0.000_D20190715_T011429.pickle
tmax_fre=0.049997, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th0.683_ph6.016_ps0.000_D20190715_T142926.pickle
tmax_fre=0.049999, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.639_ph6.283_ps0.000_D20190715_T045619.pickle
tmax_fre=0.051998, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.639_ph3.342_ps0.000_D20190715_T031150.pickle
tmax_fre=0.051997, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.229_ph3.075_ps0.000_D20190715_T024550.pickle
tmax_fre=0.035006, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.503_ph1.872_ps0.000_D20190715_T020547.pickle
tmax_fre=0.052006, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th2.595_ph3.342_ps0.000_D20190715_T031150.pickle
tmax_fre=0.052003, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.776_ph3.075_ps0.000_D20190715_T024550.pickle
tmax_fre=0.052009, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.912_ph3.476_ps0.000_D20190715_T031731.pickle
tmax_fre=0.052002, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th0.410_ph2.807_ps0.000_D20190715_T023652.pickle
tmax_fre=0.036997, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.503_ph1.069_ps0.000_D20190715_T005116.pickle
tmax_fre=0.051997, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th2.185_ph3.208_ps0.000_D20190715_T025013.pickle
tmax_fre=0.045997, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th0.683_ph6.016_ps0.000_D20190715_T045020.pickle
tmax_fre=0.052011, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th2.595_ph3.476_ps0.000_D20190715_T031731.pickle
tmax_fre=0.036003, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.503_ph1.337_ps0.000_D20190715_T011428.pickle
tmax_fre=0.051999, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th2.322_ph3.342_ps0.000_D20190715_T031151.pickle
tmax_fre=0.037008, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.639_ph0.936_ps0.000_D20190715_T005118.pickle
tmax_fre=0.047998, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.912_ph0.267_ps0.000_D20190714_T225427.pickle
tmax_fre=0.037000, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.639_ph2.005_ps0.000_D20190715_T020546.pickle
tmax_fre=0.051997, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th2.049_ph3.208_ps0.000_D20190715_T025014.pickle
tmax_fre=0.052018, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.093_ph3.075_ps0.000_D20190715_T024550.pickle
tmax_fre=0.035000, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.503_ph4.946_ps0.000_D20190715_T040522.pickle
tmax_fre=0.051997, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th2.732_ph3.476_ps0.000_D20190715_T031731.pickle
tmax_fre=0.052007, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th3.142_ph0.134_ps0.000_D20190714_T225427.pickle
tmax_fre=0.052005, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th0.137_ph2.941_ps0.000_D20190715_T023808.pickle
tmax_fre=0.036007, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.639_ph4.278_ps0.000_D20190715_T033910.pickle
tmax_fre=0.052002, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th0.410_ph3.075_ps0.000_D20190715_T024550.pickle
tmax_fre=0.052000, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th2.595_ph3.208_ps0.000_D20190715_T025013.pickle
tmax_fre=0.049997, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.366_ph0.134_ps0.000_D20190714_T225427.pickle
tmax_fre=0.052009, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th0.273_ph2.807_ps0.000_D20190715_T023653.pickle



save to /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/phase_mape_fre/0000.png



save to /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/phase_mape_fre/0001.png



save to /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/phase_mape_fre/0002.png


In [ ]:

calculate the phase map of stable trajectory using the KMeans method.


In [186]:
# show phase map of theta-phi, part 1
importlib.reload(spf_tb)
job_dir = 'ecoC01B05_T0.01_psi-0a'
table_name = 'ecoC01B05_T0.01'

t_headle = '(.*?).pickle'
t_path = os.listdir(os.path.join(PWD, job_dir))
filename_list = [filename for filename in os.listdir(os.path.join(PWD, job_dir)) 
                 if re.match(t_headle, filename) is not None]
ini_theta_list = []
ini_phi_list = []
lst_eta_list = []
pickle_path_list = []
idx_list = []
theta_primary_fre_list = []
phi_primary_fre_list = []
psi_primary_fre_list = []
for i0, tname in enumerate(tqdm_notebook(filename_list[:])):
    tpath = os.path.join(PWD, job_dir, tname)
    with open(tpath, 'rb') as handle:
        tpick = pickle.load(handle)
    ini_theta_list.append(tpick['ini_theta'])
    ini_phi_list.append(tpick['ini_phi'])
    lst_eta_list.append(tpick['Table_eta'][-1])
    pickle_path_list.append(tpath)
    idx_list.append(i0)
    
    # fft rule
    tx = tpick['Table_t']
    tmin = np.max((0, tx.max() - 1000))
    idx = tx > tmin
    # the last frequence is the major frequence. 
    use_fft_number = 3
    t1 = -use_fft_number - 1
    theta_primary_fre_list.append(spf_tb.get_primary_fft_fre(tx[idx], tpick['Table_theta'][idx])[t1:-1])
    phi_primary_fre_list.append(spf_tb.get_primary_fft_fre(tx[idx], tpick['Table_phi'][idx])[t1:-1])
    psi_primary_fre_list.append(spf_tb.get_primary_fft_fre(tx[idx], tpick['Table_psi'][idx])[t1:-1])


/home/zhangji/anaconda3/lib/python3.5/site-packages/ipykernel/__main__.py:17: TqdmDeprecationWarning: This function will be removed in tqdm==5.0.0
Please use `tqdm.notebook.tqdm` instead of `tqdm.tqdm_notebook`


In [216]:
# show phase map of theta-phi, part 2
def show_phase_map(tuse):
    fig = plt.figure(figsize=(20, 12), dpi=300)
    fig.patch.set_facecolor('white')
    ax0 = fig.add_subplot(111, polar=True)
    n_xticks = 32
    xticks = np.arange(n_xticks)
    ax0.set_xticks(xticks / n_xticks * 2 * np.pi)
    ax0.set_xticklabels(['$\dfrac{%d}{%d}2\pi$' % (i0, n_xticks) for i0 in xticks])
    ax0.set_yticklabels([])
    ax0.set_ylim(0, np.pi)
    tdata = tuse.values
    im = ax0.pcolor(tuse.columns.values, tuse.index.values, tdata, 
                    cmap=plt.get_cmap('Set2', np.nanmax(tdata)+1), 
                    vmin=np.nanmin(tdata)-.5, vmax=np.nanmax(tdata)+.5)
    ticks = np.arange(np.nanmin(tdata), np.nanmax(tdata)+1)
    fig.colorbar(im, ax=ax0, orientation='vertical', ticks=ticks).ax.tick_params(labelsize=fontsize)

In [257]:
np.around(np.pi, 3)


Out[257]:
3.142

In [239]:
from sklearn.cluster import KMeans
from sklearn.mixture import GaussianMixture

use_data = np.hstack((np.vstack(theta_primary_fre_list)[:, 1:], 
                      np.vstack(phi_primary_fre_list)[:, 1:]))
#KMeans
km = KMeans(n_clusters=6, n_init=10, max_iter=1000, tol=1e-9, precompute_distances=True, n_jobs=-1, random_state=0)
km.fit(use_data)
km.predict(use_data)
tlabels = km.labels_

# # personal process
# tlabels[tlabels == 4] = 3

tdata1 = pd.DataFrame({'ini_theta': np.around(ini_theta_list, 3), 
                      'ini_phi': np.around(ini_phi_list, 3), 
                      'lst_eta': np.around(lst_eta_list, 3), 
                      'use_fre': tlabels, 
                      'data_idx': idx_list })
tdata1 = tdata1.pivot_table(index=['ini_theta'], columns=['ini_phi'])
show_phase_map(tdata1.use_fre)



In [250]:
np.array(ini_theta_list)[tlabels==show_tlabel]


Out[250]:
array([0.81955, 0.40977, 2.18546, 0.81955, 0.68295, 0.54636, 0.81955, 1.77568, 2.59523,
       2.59523, 1.5025 , 2.86841, 0.13659, 2.04887, 2.04887, 1.5025 , 1.77568, 2.59523,
       0.95614, 0.40977, 0.81955, 0.40977, 2.04887, 1.77568, 1.63909, 0.13659, 1.77568,
       1.36591, 1.63909, 1.36591, 1.77568, 2.32205, 3.005  , 2.32205, 0.54636, 2.32205,
       1.36591, 3.14159, 2.18546, 3.005  , 0.81955, 2.73182, 2.04887, 1.09273, 3.14159,
       2.86841, 0.27318, 1.77568, 2.18546, 0.27318, 3.14159, 2.73182, 1.5025 , 0.54636,
       1.36591, 1.5025 , 2.45864, 1.63909, 3.005  , 0.95614, 1.36591, 2.59523, 1.77568,
       0.81955, 1.63909, 2.18546, 2.04887, 0.54636, 0.40977, 0.13659, 1.63909, 2.18546,
       2.18546, 0.40977, 1.22932, 2.73182, 1.77568, 2.32205, 3.14159, 1.09273, 0.27318,
       2.59523, 1.36591, 1.36591, 3.005  , 2.18546, 2.59523, 2.45864, 0.40977, 1.09273,
       2.59523, 1.77568, 2.45864, 1.5025 , 0.27318, 1.63909, 2.04887, 0.95614, 2.45864,
       0.68295, 1.36591, 1.36591, 2.59523, 1.22932, 2.32205, 2.59523, 2.45864, 2.86841,
       0.54636, 2.45864, 2.86841, 2.32205, 1.77568, 1.22932, 1.22932, 2.73182, 2.86841,
       0.54636, 0.54636, 2.86841, 2.86841, 1.22932, 1.5025 , 2.73182, 1.36591, 1.5025 ,
       1.36591, 2.59523, 1.63909, 0.40977, 0.81955, 1.77568, 0.68295, 0.27318, 1.77568,
       0.68295, 1.36591, 0.40977, 0.95614, 1.36591, 0.54636, 2.32205, 0.27318, 2.45864,
       1.36591, 0.81955, 0.68295, 1.22932, 3.14159, 2.04887, 1.09273, 0.13659, 0.95614,
       3.005  , 2.18546, 2.32205, 0.40977, 0.95614, 2.73182, 0.13659, 1.5025 , 2.45864,
       0.13659, 2.04887, 0.68295, 2.18546, 1.77568, 0.40977, 0.54636, 0.13659, 1.5025 ,
       0.95614, 0.95614, 1.36591, 0.40977, 0.81955, 0.95614, 1.77568, 2.86841, 0.68295,
       0.27318, 0.68295, 2.32205, 0.27318, 0.13659, 0.54636, 0.27318, 1.36591, 1.91227,
       2.73182, 2.18546, 2.59523, 3.14159, 3.14159, 2.32205, 2.04887, 0.40977, 2.59523,
       3.14159, 1.5025 , 2.59523, 3.005  , 0.54636, 2.18546, 0.13659, 0.68295, 2.86841,
       3.005  , 2.73182, 2.73182, 3.005  , 0.95614, 1.5025 , 2.32205, 1.77568, 3.14159,
       2.45864, 0.81955, 0.68295, 3.005  , 1.91227, 2.86841, 0.54636, 1.36591, 1.91227,
       1.63909, 0.54636, 0.95614, 2.73182, 0.68295, 1.36591, 2.18546, 3.14159])

In [251]:
importlib.reload(spf_tb)
show_tlabel = 0

for theta, phi in zip(np.array(ini_theta_list)[tlabels==show_tlabel][:10], 
                         np.array(ini_phi_list)[tlabels==show_tlabel][:10]): 
    spf_tb.show_pickle_results(job_dir, theta, phi, table_name, fast_mode=1)


-ini_theta 0.819546 -ini_phi 1.604218 -ini_psi 0.000000
-ini_theta 0.409773 -ini_phi 0.133685 -ini_psi 0.000000
-ini_theta 2.185456 -ini_phi 0.534739 -ini_psi 0.000000
-ini_theta 0.819546 -ini_phi 2.540011 -ini_psi 0.000000
-ini_theta 0.682955 -ini_phi 0.133685 -ini_psi 0.000000
-ini_theta 0.546364 -ini_phi 0.534739 -ini_psi 0.000000
-ini_theta 0.819546 -ini_phi 0.133685 -ini_psi 0.000000
-ini_theta 1.775683 -ini_phi 0.935794 -ini_psi 0.000000
-ini_theta 2.595229 -ini_phi 0.267370 -ini_psi 0.000000
-ini_theta 2.595229 -ini_phi 0.133685 -ini_psi 0.000000

In [241]:
importlib.reload(spf_tb)

for show_tlabel in np.arange(tlabels.max()+1): 
    theta = np.array(ini_theta_list)[tlabels==show_tlabel][0]
    phi = np.array(ini_phi_list)[tlabels==show_tlabel][0]
    spf_tb.show_pickle_results(job_dir, theta, phi, table_name, fast_mode=2)


-ini_theta 0.819546 -ini_phi 1.604218 -ini_psi 0.000000
-ini_theta 3.005002 -ini_phi 0.401054 -ini_psi 0.000000
-ini_theta 1.639092 -ini_phi 0.267370 -ini_psi 0.000000
-ini_theta 3.141592 -ini_phi 0.334212 -ini_psi 0.000000
-ini_theta 2.595229 -ini_phi 2.807381 -ini_psi 0.000000
-ini_theta 2.458638 -ini_phi 3.074750 -ini_psi 0.000000

In [ ]:
tlabels=