In [1]:
# import numpy as np

# # !/usr/bin/env python3
# # -*- coding: utf-8 -*-
# """
# Created on 20181219

# @author: zhangji

# Trajection of a ellipse, Jeffery equation. 
# """

# %pylab inline
# pylab.rcParams['figure.figsize'] = (25, 11)
# fontsize = 40

# import numpy as np
# import scipy as sp
# from scipy.optimize import leastsq, curve_fit
# from scipy import interpolate
# from scipy.interpolate import interp1d
# from scipy.io import loadmat, savemat
# # import scipy.misc

# import matplotlib
# from matplotlib import pyplot as plt
# from matplotlib import animation, rc
# import matplotlib.ticker as mtick
# from mpl_toolkits.axes_grid1.inset_locator import inset_axes, zoomed_inset_axes
# from mpl_toolkits.mplot3d import Axes3D, axes3d

# from sympy import symbols, simplify, series, exp
# from sympy.matrices import Matrix
# from sympy.solvers import solve

# from IPython.display import display, HTML
# from tqdm import tqdm_notebook as tqdm
# import pandas as pd
# import re
# from scanf import scanf
# import os
# import glob

# from codeStore import support_fun as spf
# from src.support_class import *
# from src import stokes_flow as sf

# rc('animation', html='html5')
# PWD = os.getcwd()
# font = {'size': 20}
# matplotlib.rc('font', **font)
# np.set_printoptions(linewidth=90, precision=5)

from tqdm import tqdm_notebook
import os
import glob
import natsort 
import numpy as np
import scipy as sp
from scipy.optimize import leastsq, curve_fit
from scipy import interpolate, integrate
from scipy import spatial, signal
# from scipy.interpolate import interp1d
from scipy.io import loadmat, savemat
# import scipy.misc
import importlib
from IPython.display import display, HTML
import pandas as pd
import pickle
import re
from scanf import scanf

import matplotlib
# matplotlib.use('agg')
from matplotlib import pyplot as plt
import matplotlib.colors as colors
from matplotlib import animation, rc
import matplotlib.ticker as mtick
from mpl_toolkits.axes_grid1.inset_locator import inset_axes, zoomed_inset_axes
from mpl_toolkits.mplot3d import Axes3D, axes3d
from mpl_toolkits.axes_grid1.axes_divider import make_axes_locatable
from mpl_toolkits.mplot3d.art3d import Line3DCollection
from matplotlib import cm

from tqdm import tqdm, tqdm_notebook
from time import time
from src.support_class import *
from src import jeffery_model as jm
from codeStore import support_fun as spf
from codeStore import support_fun_table as spf_tb

# %matplotlib notebook
%matplotlib inline
rc('animation', html='html5')
fontsize = 40
PWD = os.getcwd()

In [2]:
fig = plt.figure(figsize=(2, 2))
fig.patch.set_facecolor('white')
ax0 = fig.add_subplot(1, 1, 1)



In [3]:
job_dir = 'ecoC01B05_wt0.2_psi-0a'
table_name = 'ecoC01B05_tao1_wm0.2'

In [14]:
# show phase map of theta-phi, load date
importlib.reload(spf_tb)

t_headle = '(.*?).pickle'
t_path = os.listdir(os.path.join(PWD, job_dir))
filename_list = [filename for filename in os.listdir(os.path.join(PWD, job_dir)) 
                 if re.match(t_headle, filename) is not None]
ini_theta_list = []
ini_phi_list = []
lst_eta_list = []
theta_max_fre_list = []
phi_max_fre_list = []
psi_max_fre_list = []
eta_max_fre_list = []
pickle_path_list = []
idx_list = []
for i0, tname in enumerate(tqdm_notebook(filename_list[:])):
    tpath = os.path.join(PWD, job_dir, tname)
    with open(tpath, 'rb') as handle:
        tpick = pickle.load(handle)
    ini_theta_list.append(tpick['ini_theta'])
    ini_phi_list.append(tpick['ini_phi'])
    lst_eta_list.append(tpick['Table_eta'][-1])
    pickle_path_list.append(tpath)
    idx_list.append(i0)
    
    # fft rule
    tx = tpick['Table_t']
    tmin = np.max((0, tx.max() - 1000))
    idx = tx > tmin    
    freq_pk = spf_tb.get_major_fre(tx[idx], tpick['Table_theta'][idx])
    idx = tx > (tx.max() - 1 / freq_pk * 10)
    theta_max_fre_list.append(spf_tb.get_major_fre(tx[idx], tpick['Table_theta'][idx]))
    phi_max_fre_list.append(spf_tb.get_major_fre(tx[idx], tpick['Table_phi'][idx]))
    psi_max_fre_list.append(spf_tb.get_major_fre(tx[idx], tpick['Table_psi'][idx]))
    eta_max_fre_list.append(spf_tb.get_major_fre(tx[idx], tpick['Table_eta'][idx]))

data0 = pd.DataFrame({'ini_theta': np.around(ini_theta_list, 3), 
                 'ini_phi': np.around(ini_phi_list, 3), 
                 'lst_eta': np.around(lst_eta_list, 3), 
                 'theta_max_fre': theta_max_fre_list, 
                 'phi_max_fre': phi_max_fre_list, 
                 'psi_max_fre': psi_max_fre_list, 
                 'eta_max_fre': eta_max_fre_list, 
                 'data_idx': idx_list })
data = data0.pivot_table(index=['ini_theta'], columns=['ini_phi'])
lst_eta = data.lst_eta
theta_max_fre = data.theta_max_fre
phi_max_fre = data.phi_max_fre
psi_max_fre = data.psi_max_fre
eta_max_fre = data.eta_max_fre
data_idx = data.data_idx.fillna(-1).astype(int)


/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:17: TqdmDeprecationWarning: This function will be removed in tqdm==5.0.0
Please use `tqdm.notebook.tqdm` instead of `tqdm.tqdm_notebook`


In [5]:
# check if the 3D parameter space is been traversed or not 
do_check = False
if do_check:
    t_headle = '(.*?).pickle'
    t_path = os.listdir(os.path.join(PWD, job_dir))
    filename_list = [filename for filename in os.listdir(os.path.join(PWD, job_dir)) 
                     if re.match(t_headle, filename) is not None]
    ttheta = []
    tphi = []
    tpsi = []
    for i0, tname in enumerate(tqdm_notebook(filename_list[:])):
        tpath = os.path.join(PWD, job_dir, tname)
        with open(tpath, 'rb') as handle:
            tpick = pickle.load(handle)
        ttheta.append(tpick['Table_theta'])
        tphi.append(tpick['Table_phi'])
        tpsi.append(tpick['Table_psi'])

    ttheta, tphi, tpsi = np.hstack(ttheta), np.hstack(tphi), np.hstack(tpsi)
    from evtk.hl import pointsToVTK
    vtu_name = '/home/zhangji/check_th_ph_ps_%s' % job_dir
    pointsToVTK(vtu_name, 
                ttheta, tphi, tpsi, 
                data={'th_ph_ps': ttheta})
    print('save theta_phi_psi infomation to %s' % vtu_name)

In [6]:
# sort phase map of theta-phi using the name beging with pick frequience
importlib.reload(spf_tb)
do_sort = False

if do_sort:
    # clear dir
    dirpath = os.path.join(PWD, job_dir, 'th_ph_fft')
    if os.path.exists(dirpath) and os.path.isdir(dirpath):
        import shutil
        shutil.rmtree(dirpath)
        print('remove folder %s' % dirpath)
    os.makedirs(dirpath)
    print('make folder %s' % dirpath)

    for tname in tqdm_notebook(filename_list[:]):
        tpath = os.path.join(PWD, job_dir, tname)
        with open(tpath, 'rb') as handle:
            tpick = pickle.load(handle)
        Table_t = tpick['Table_t']
        Table_dt = tpick['Table_dt']
        Table_X = tpick['Table_X']
        Table_P = tpick['Table_P']
        Table_P2 = tpick['Table_P2']
        Table_theta = tpick['Table_theta']
        Table_phi = tpick['Table_phi']
        Table_psi = tpick['Table_psi']
        Table_eta = tpick['Table_eta']

        tmin = np.max((0, Table_t.max() - 1000))
        idx = Table_t > tmin    
        freq_pk = spf_tb.get_major_fre(Table_t[idx], Table_theta[idx])
        idx = Table_t > (Table_t.max() - 1 / freq_pk * 10)
        save_name = 'fre%.5f_%s.jpg' % (freq_pk, os.path.splitext(os.path.basename(tname))[0])
        fig = spf_tb.light_save_theta_phi(os.path.join(dirpath, save_name), 
                                    Table_t[idx], Table_dt[idx], Table_X[idx], Table_P[idx], Table_P2[idx], 
                                    Table_theta[idx], Table_phi[idx], Table_psi[idx], Table_eta[idx])
        plt.close(fig)

In [7]:
importlib.reload(spf_tb)
theta, phi = 0, 0

tpick, _ = spf_tb.load_table_date_pickle(job_dir, theta, phi)
Table_t = tpick['Table_t']
Table_dt = tpick['Table_dt']
Table_X = tpick['Table_X']
Table_P = tpick['Table_P']
Table_P2 = tpick['Table_P2']
Table_theta = tpick['Table_theta']
Table_phi = tpick['Table_phi']
Table_psi = tpick['Table_psi']
Table_eta = tpick['Table_eta']
print('-ini_theta %f -ini_phi %f -ini_psi %f' % 
      (tpick['Table_theta'][0], tpick['Table_phi'][0], tpick['Table_psi'][0]))

freq_pk = spf_tb.get_major_fre(Table_t, Table_theta)
idx = Table_t > Table_t.max() - 1 / freq_pk * 10
# spf_tb.show_table_result(Table_t[idx], Table_dt[idx], Table_X[idx], Table_P[idx], Table_P2[idx], 
#                          Table_theta[idx], Table_phi[idx], Table_psi[idx], Table_eta[idx], save_every)
spf_tb.show_theta_phi(Table_t[idx], Table_dt[idx], Table_X[idx], Table_P[idx], Table_P2[idx], 
                      Table_theta[idx], Table_phi[idx], Table_psi[idx], Table_eta[idx])
spf_tb.show_theta_phi_psi_eta(Table_t[idx], Table_dt[idx], Table_X[idx], Table_P[idx], Table_P2[idx], 
                              Table_theta[idx], Table_phi[idx], Table_psi[idx], Table_eta[idx])
spf_tb.show_center_X(Table_t[idx], Table_dt[idx], Table_X[idx], Table_P[idx], Table_P2[idx], 
                     Table_theta[idx], Table_phi[idx], Table_psi[idx], Table_eta[idx], 
                     table_name=table_name)


-ini_theta 0.000000 -ini_phi 0.000000 -ini_psi 0.000000
/home/zhangji/stokes_flow_master/codeStore/support_fun_table.py:615: UserWarning: This figure includes Axes that are not compatible with tight_layout, so results might be incorrect.
  plt.tight_layout()
Out[7]:
True

In [8]:
with pd.option_context('display.max_rows', 100, 'display.max_columns', 100):
    display(data.theta_max_fre)


ini_phi 0.000 0.143 0.286 0.428 0.571 0.714 0.857 1.000 1.142 1.285 1.428 1.571 1.714 1.856 1.999 2.142 2.285 2.428 2.570 2.713 2.856 2.999 3.142 3.284 3.427 3.570 3.713 3.856 3.998 4.141 4.284 4.427 4.570 4.712 4.855 4.998 5.141 5.284 5.426 5.569 5.712 5.855 5.998 6.140 6.283
ini_theta
0.000 0.019001 0.019001 0.019001 0.019001 0.019001 0.019001 0.019001 0.019001 0.019001 0.019001 0.019001 0.019001 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.019001 0.019001 0.019001 0.019001 0.019001 0.019001 0.019001 0.019001 0.019001 0.019001 0.019001 0.019001
0.143 0.018999 0.019000 0.018999 0.018999 0.020463 0.018999 0.019000 0.020348 0.018999 0.018999 0.018999 0.018999 0.018999 0.018999 0.020209 0.018999 0.015000 0.015002 0.015000 0.018999 0.015000 0.014999 0.014999 0.014999 0.015001 0.015000 0.014999 0.015000 0.015002 0.015001 0.014999 0.014999 0.015001 0.015000 0.014999 0.014999 0.014999 0.015001 0.019000 0.018999 0.018999 0.018999 0.019000 0.018999 0.019000
0.286 0.020187 0.018999 0.020356 0.019000 0.018999 0.019001 0.020283 0.018999 0.019001 0.019000 0.018999 0.020217 0.020268 0.019000 0.020280 0.014999 0.014999 0.014999 0.015000 0.019001 0.014999 0.014999 0.014999 0.014999 0.015000 0.015002 0.014999 0.014999 0.015000 0.014999 0.015000 0.015000 0.015001 0.015001 0.015000 0.015001 0.015000 0.015000 0.018999 0.018999 0.020316 0.018999 0.020302 0.019000 0.020227
0.428 0.018999 0.018999 0.018999 0.019000 0.019002 0.018999 0.020276 0.019001 0.020242 0.018999 0.019000 0.018999 0.018999 0.018999 0.014999 0.015001 0.014999 0.015000 0.014999 0.018999 0.019000 0.014999 0.015000 0.015000 0.015000 0.015001 0.015000 0.014999 0.015000 0.015001 0.015000 0.015001 0.015000 0.015001 0.014999 0.015001 0.015001 0.014999 0.015000 0.018999 0.019000 0.018999 0.018999 0.018999 0.018999
0.571 0.019000 0.018999 0.018999 0.020235 0.018999 0.018999 0.019000 0.019000 0.018999 0.018999 0.014999 0.015000 0.015000 0.015000 0.015001 0.015000 0.014999 0.015001 0.018999 0.019001 0.019000 0.014999 0.014999 0.015000 0.015000 0.015001 0.014999 0.015000 0.014999 0.014999 0.014999 0.015001 0.014999 0.014999 0.015000 0.015000 0.015001 0.014999 0.014999 0.019000 0.018999 0.020463 0.019000 0.020333 0.019000
0.714 0.018999 0.019001 0.019001 0.019000 0.018999 0.019000 0.019000 0.019000 0.014999 0.014999 0.014999 0.015000 0.014999 0.015001 0.014999 0.014999 0.014999 0.019945 0.019001 0.018999 0.020312 0.014999 0.015000 0.015001 0.015000 0.015002 0.015000 0.015000 0.015000 0.015001 0.015000 0.015000 0.015000 0.015001 0.015000 0.015001 0.015000 0.014999 0.014999 0.014999 0.018999 0.018999 0.019001 0.018999 0.019001
0.857 0.018999 0.019001 0.018999 0.018999 0.018999 0.018999 0.015001 0.015000 0.015001 0.018999 0.019000 0.014999 0.015000 0.014999 0.018999 0.018999 0.018999 0.018999 0.018999 0.019001 0.020188 0.014999 0.015000 0.015001 0.014999 0.015000 0.014999 0.014999 0.015001 0.015000 0.015000 0.014999 0.015001 0.015000 0.014999 0.015000 0.014999 0.015000 0.015001 0.015001 0.020333 0.018999 0.018999 0.019000 0.018999
1.000 0.019000 0.018999 0.018999 0.018999 0.018999 0.015000 0.015000 0.019001 0.018999 0.014999 0.014999 0.019000 0.015000 0.018999 0.019000 0.018999 0.018999 0.018999 0.019000 0.019000 0.019000 0.015000 0.015000 0.015002 0.015001 0.015001 0.014999 0.014999 0.015000 0.014999 0.015001 0.014999 0.015001 0.015000 0.014999 0.015000 0.015001 0.020259 0.018999 0.018999 0.014999 0.018999 0.019001 0.019000 0.019000
1.142 0.018999 0.018999 0.019782 0.015002 0.014999 0.018999 0.018999 0.015001 0.014999 0.019001 0.019000 0.015001 0.018999 0.018999 0.014999 0.019000 0.018999 0.019001 0.019001 0.018999 0.018999 0.014999 0.014999 0.015000 0.015000 0.015000 0.015000 0.014999 0.014999 0.015000 0.015000 0.015000 0.015000 0.014999 0.014999 0.014999 0.018999 0.019001 0.018999 0.019000 0.019000 0.018999 0.019001 0.018999 0.018999
1.285 0.018999 0.019574 0.015000 0.019000 0.019000 0.018999 0.019001 0.019000 0.020290 0.020291 0.018999 0.019000 0.015000 0.019001 0.018999 0.018999 0.019001 0.019000 0.014999 0.018999 0.018999 0.014999 0.014999 0.014999 0.015000 0.014999 0.014999 0.014999 0.014999 0.014999 0.015000 0.014999 0.015000 0.019000 0.019000 0.018999 0.018999 0.019000 0.019000 0.019000 0.018999 0.019000 0.018999 0.019000 0.019001
1.428 0.018999 0.014999 0.018999 0.020268 0.018999 0.014999 0.018999 0.018999 0.019000 0.014999 0.018999 0.019001 0.020242 0.014999 0.019000 0.018999 0.014999 0.019001 0.019001 0.015001 0.019000 0.015001 0.014999 0.014999 0.015001 0.015000 0.018999 0.019000 0.018999 0.020319 0.020295 0.020355 0.019957 0.019000 0.018999 0.018999 0.019001 0.019001 0.019001 0.018999 0.020425 0.018999 0.019000 0.019000 0.019000
1.571 0.018999 0.014999 0.014999 0.019000 0.015000 0.014999 0.019000 0.018999 0.020152 0.018999 0.021160 0.072579 0.019961 0.019000 0.018999 0.019000 0.018999 0.018999 0.019000 0.015000 0.014999 0.019001 0.014999 0.015001 0.018999 0.019001 0.018999 0.018999 0.020424 0.019504 0.019468 0.019658 0.019607 0.053644 0.019754 0.019820 0.020045 0.020102 0.020328 0.019540 0.018999 0.019000 0.019000 0.018999 0.018999
1.714 0.018999 0.015000 0.019000 0.018999 0.014999 0.020322 0.018999 0.019002 0.020196 0.018999 0.020259 0.018999 0.018999 0.019000 0.018999 0.019001 0.020229 0.018999 0.018999 0.018999 0.019000 0.014999 0.018999 0.015000 0.018999 0.018999 0.019631 0.018999 0.019000 0.019001 0.018999 0.019000 0.019000 0.019690 0.020335 0.020317 0.018999 0.019001 0.018999 0.018999 0.018999 0.018999 0.019000 0.018999 0.020018
1.856 0.018999 0.018999 0.014999 0.018999 0.019000 0.019000 0.018999 0.015000 0.018999 0.018999 0.018999 0.019000 0.019000 0.019000 0.019514 0.019000 0.015000 0.015000 0.019001 0.018999 0.018999 0.019000 0.018999 0.014999 0.019000 0.018999 0.020295 0.018999 0.019000 0.020337 0.018999 0.019000 0.019000 0.020189 0.018999 0.019000 0.018999 0.019000 0.020261 0.019001 0.018999 0.018999 0.018999 0.019000 0.018999
1.999 0.019001 0.020203 0.015001 0.019000 0.018999 0.018999 0.018999 0.019001 0.019001 0.014999 0.018999 0.018999 0.019001 0.015000 0.014999 0.020314 0.019000 0.019000 0.018999 0.019900 0.019000 0.019000 0.014999 0.015000 0.014999 0.018999 0.019000 0.019000 0.018999 0.018999 0.019000 0.019000 0.019000 0.018999 0.019473 0.019000 0.019000 0.018999 0.018999 0.019000 0.019000 0.019000 0.018999 0.019668 0.019000
2.142 0.018999 0.018999 0.014999 0.019000 0.019000 0.015000 0.014999 0.014999 0.015001 0.015000 0.015000 0.018999 0.019001 0.018999 0.019000 0.019001 0.019000 0.019001 0.019000 0.018999 0.018999 0.018999 0.015000 0.019001 0.014999 0.018999 0.019000 0.018999 0.018999 0.020276 0.020352 0.018999 0.019000 0.019001 0.018999 0.018999 0.020233 0.018999 0.018999 0.018999 0.020259 0.018999 0.018999 0.019000 0.019999
2.285 0.018999 0.019000 0.014999 0.015000 0.019000 0.018999 0.018999 0.018999 0.020263 0.019000 0.019000 0.019002 0.018999 0.018999 0.018999 0.020236 0.020248 0.018999 0.018999 0.018999 0.019000 0.015000 0.014999 0.015000 0.015000 0.015000 0.018999 0.020282 0.019000 0.018999 0.019000 0.018999 0.019000 0.018999 0.018999 0.019000 0.018999 0.018999 0.019000 0.019000 0.018999 0.018999 0.019000 0.018999 0.018999
2.428 0.018999 0.018999 0.020322 0.020417 0.018999 0.020321 0.018999 0.019000 0.018999 0.018999 0.018999 0.019000 0.018999 0.018999 0.018999 0.018999 0.019000 0.019000 0.018999 0.018999 0.014999 0.014999 0.014999 0.015000 0.014999 0.014999 0.019000 0.018999 0.018999 0.020237 0.019000 0.020268 0.018999 0.020419 0.018999 0.018999 0.019000 0.018999 0.018999 0.020262 0.019000 0.020346 0.020302 0.019000 0.018999
2.570 0.018999 0.019000 0.019000 0.018999 0.019000 0.020376 0.018999 0.018999 0.019001 0.018999 0.018999 0.018999 0.019700 0.018999 0.018999 0.020246 0.020230 0.019000 0.019000 0.015000 0.014999 0.014999 0.014999 0.015000 0.019000 0.014999 0.020359 0.018999 0.019000 0.019000 0.018999 0.018999 0.018999 0.020239 0.020270 0.019000 0.019000 0.018999 0.019000 0.019000 0.019777 0.018999 0.020295 0.019526 0.018999
2.713 0.020263 0.019000 0.020280 0.018999 0.019001 0.018999 0.018999 0.018999 0.019000 0.020309 0.020372 0.018999 0.019000 0.019000 0.019001 0.018999 0.018999 0.015000 0.014999 0.014999 0.014999 0.014999 0.014999 0.015000 0.018999 0.014999 0.015001 0.018999 0.020434 0.018999 0.020377 0.018999 0.018999 0.019001 0.019000 0.019001 0.019000 0.019000 0.019001 0.019000 0.018999 0.019000 0.018999 0.019000 0.020291
2.856 0.019000 0.020255 0.019000 0.020324 0.018999 0.019000 0.018999 0.020334 0.020333 0.019000 0.020251 0.020291 0.019000 0.019000 0.014999 0.015001 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.019000 0.015000 0.014999 0.019000 0.020296 0.020307 0.018999 0.018999 0.020363 0.019000 0.018999 0.018999 0.018999 0.018999 0.020331 0.019000 0.019000 0.019000 0.018999 0.019000 0.018999
2.999 0.019000 0.018999 0.020290 0.019001 0.018999 0.018999 0.019001 0.020369 0.018999 0.019001 0.019002 0.015000 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.014999 0.015000 0.014999 0.014999 0.014999 0.019001 0.014999 0.014999 0.014999 0.018999 0.020205 0.020333 0.018999 0.018999 0.018999 0.018999 0.020246 0.020257 0.020291 0.019000 0.018999 0.020293 0.018999 0.018999 0.020334 0.018999
3.142 0.014999 0.014999 0.015001 0.019001 0.014999 0.015001 0.019001 0.019001 0.018999 0.020301 0.018999 0.018999 0.019000 0.018999 0.018999 0.020276 0.020330 0.019000 0.018999 0.018999 0.018999 0.018999 0.019000 0.020334 0.019000 0.018999 0.018999 0.018999 0.018999 0.018999 0.018999 0.014999 0.015000 0.014999 0.014999 0.014999 0.014999 0.015000 0.015000 0.015001 0.014999 0.014999 0.015000 0.014999 0.014999

In [11]:
# sort all frequrents
with np.printoptions(precision=10, suppress=True, threshold=1e10):
    print(np.flipud(np.sort(data.theta_max_fre.values.flatten())))


[0.0725787195 0.0536435235 0.0211597589 0.0204634222 0.0204625997 0.0204338361
 0.0204252502 0.0204244351 0.0204190748 0.0204169891 0.0203769806 0.0203757829
 0.0203717366 0.0203688488 0.0203627101 0.0203587204 0.0203556982 0.0203552878
 0.0203519602 0.0203479788 0.020345866  0.0203374873 0.0203346473 0.0203344406
 0.0203342119 0.0203338244 0.0203333685 0.0203329198 0.0203326539 0.0203326266
 0.0203307041 0.0203301296 0.0203281002 0.0203241473 0.0203217126 0.0203216839
 0.0203207521 0.0203193486 0.0203174858 0.0203160062 0.0203135332 0.0203122125
 0.0203093721 0.0203065055 0.0203022663 0.0203021952 0.02030118   0.0202956831
 0.0202948775 0.0202948597 0.0202947431 0.0202934119 0.0202914444 0.0202913408
 0.0202911981 0.0202905264 0.0202900513 0.0202899997 0.020282997  0.0202817985
 0.0202801448 0.020279807  0.0202763234 0.0202761255 0.0202759516 0.0202696919
 0.0202682809 0.0202678692 0.0202676576 0.0202628272 0.0202626306 0.0202617518
 0.0202608325 0.0202594163 0.0202591555 0.0202587082 0.020256999  0.0202552682
 0.0202507407 0.0202484926 0.0202461932 0.020245952  0.0202418936 0.0202415857
 0.0202386497 0.0202370231 0.0202361152 0.0202351413 0.0202326625 0.020229517
 0.0202287025 0.0202266074 0.0202168434 0.0202094732 0.0202047169 0.0202027466
 0.0201961535 0.0201892923 0.0201880048 0.0201865584 0.0201516011 0.0201021905
 0.0200454486 0.0200184714 0.0199993173 0.0199611357 0.0199566062 0.0199454677
 0.0199004332 0.0198195631 0.0197820407 0.0197774463 0.0197538243 0.019700284
 0.019689828  0.0196679719 0.0196584559 0.0196311611 0.0196074189 0.0195736811
 0.0195404227 0.0195264823 0.0195140522 0.0195042799 0.019473453  0.0194675312
 0.0190017562 0.0190016791 0.0190016535 0.0190015016 0.0190014882 0.0190014421
 0.019001325  0.0190012899 0.019001286  0.019001286  0.019001286  0.019001286
 0.019001286  0.019001286  0.019001286  0.019001286  0.019001286  0.019001286
 0.019001286  0.019001286  0.019001286  0.019001286  0.019001286  0.019001286
 0.019001286  0.019001286  0.019001286  0.019001286  0.019001286  0.019001286
 0.019001286  0.019001286  0.0190012717 0.0190012494 0.019001247  0.0190012101
 0.0190011846 0.0190011112 0.019001096  0.0190010907 0.0190010874 0.0190010649
 0.019001053  0.0190010319 0.0190010224 0.0190010098 0.0190009949 0.0190009803
 0.0190009726 0.0190009551 0.0190009281 0.0190009167 0.0190009098 0.0190008808
 0.0190008798 0.0190008766 0.0190008753 0.0190008603 0.0190008531 0.01900085
 0.0190008402 0.0190008195 0.0190007971 0.0190007668 0.0190007604 0.0190007546
 0.0190007487 0.0190007067 0.0190007026 0.0190006928 0.0190006619 0.0190006477
 0.0190006333 0.0190006311 0.0190006141 0.0190006045 0.0190006037 0.0190006035
 0.0190006021 0.0190005958 0.0190005901 0.0190005864 0.0190005801 0.0190005646
 0.0190005486 0.0190005472 0.0190004899 0.0190004898 0.0190004545 0.0190004499
 0.0190004327 0.0190004178 0.0190004088 0.0190003991 0.0190003826 0.0190003762
 0.0190003395 0.0190003349 0.0190003114 0.0190002964 0.0190002823 0.0190002769
 0.0190002702 0.0190002691 0.019000244  0.0190002419 0.0190002227 0.019000222
 0.0190002159 0.0190002131 0.0190002108 0.0190001948 0.0190001864 0.0190001855
 0.0190001808 0.0190001806 0.0190001706 0.0190001682 0.0190001632 0.0190001624
 0.019000159  0.019000145  0.0190001448 0.0190001335 0.0190001252 0.0190001148
 0.0190001004 0.0190000497 0.0190000497 0.0190000337 0.0190000325 0.0190000169
 0.0190000153 0.0190000113 0.0190000111 0.0190000073 0.0190000039 0.0189999959
 0.0189999872 0.0189999861 0.0189999858 0.0189999756 0.0189999691 0.0189999544
 0.018999953  0.0189999494 0.01899994   0.0189999397 0.0189999296 0.0189999153
 0.0189998888 0.018999886  0.0189998735 0.0189998713 0.0189998696 0.0189998646
 0.0189998588 0.0189998542 0.0189998415 0.0189998403 0.0189998286 0.0189998263
 0.0189998195 0.0189998128 0.0189998117 0.0189998115 0.0189998106 0.018999804
 0.0189997921 0.01899979   0.0189997888 0.0189997875 0.0189997874 0.0189997868
 0.0189997828 0.0189997775 0.0189997768 0.01899977   0.0189997654 0.018999765
 0.0189997643 0.0189997618 0.0189997594 0.0189997573 0.0189997556 0.0189997556
 0.0189997544 0.018999751  0.0189997502 0.0189997493 0.0189997434 0.0189997388
 0.0189997353 0.0189997339 0.0189997334 0.0189997295 0.0189997181 0.0189997176
 0.0189997145 0.0189997138 0.0189997123 0.0189997109 0.0189997085 0.0189997078
 0.0189996986 0.0189996983 0.0189996979 0.0189996889 0.0189996842 0.0189996841
 0.0189996834 0.0189996831 0.0189996814 0.018999681  0.018999681  0.0189996807
 0.0189996802 0.0189996646 0.0189996628 0.0189996584 0.0189996566 0.0189996473
 0.0189996417 0.0189996369 0.0189996365 0.0189996281 0.0189996246 0.0189996237
 0.0189996131 0.0189996112 0.0189996089 0.0189996086 0.0189996066 0.018999603
 0.0189995933 0.0189995932 0.0189995911 0.0189995895 0.0189995879 0.0189995855
 0.0189995815 0.0189995796 0.018999579  0.0189995675 0.0189995578 0.018999557
 0.0189995558 0.0189995551 0.0189995542 0.0189995445 0.0189995388 0.0189995306
 0.0189995293 0.0189995284 0.0189995135 0.0189995071 0.0189995061 0.0189995046
 0.0189994982 0.0189994977 0.018999494  0.0189994935 0.0189994922 0.0189994917
 0.018999491  0.0189994905 0.0189994827 0.0189994811 0.0189994712 0.018999471
 0.0189994682 0.018999465  0.0189994643 0.0189994626 0.018999461  0.0189994574
 0.0189994559 0.018999448  0.0189994473 0.0189994459 0.0189994342 0.0189994238
 0.0189994201 0.0189994196 0.0189994188 0.0189994177 0.018999417  0.018999414
 0.0189994076 0.0189994058 0.0189994055 0.0189994037 0.0189993987 0.0189993952
 0.0189993931 0.0189993915 0.018999389  0.0189993824 0.018999379  0.0189993779
 0.0189993746 0.0189993713 0.018999371  0.0189993678 0.0189993665 0.0189993662
 0.0189993653 0.0189993582 0.0189993546 0.0189993461 0.0189993429 0.0189993427
 0.0189993397 0.0189993388 0.0189993373 0.0189993354 0.0189993327 0.0189993266
 0.0189993235 0.0189993234 0.018999318  0.0189993173 0.0189993171 0.018999317
 0.0189993169 0.0189993165 0.0189993152 0.018999313  0.0189993129 0.0189993078
 0.0189993058 0.0189993025 0.018999302  0.0189993007 0.0189992996 0.0189992947
 0.0189992946 0.0189992898 0.0189992887 0.0189992876 0.0189992844 0.0189992786
 0.0189992767 0.0189992757 0.0189992755 0.0189992715 0.0189992696 0.0189992689
 0.0189992657 0.0189992649 0.0189992642 0.0189992635 0.0189992634 0.018999261
 0.0189992576 0.0189992567 0.0189992556 0.0189992551 0.0189992479 0.0189992436
 0.0189992427 0.0189992422 0.0189992401 0.0189992305 0.0189992273 0.0189992232
 0.0189992214 0.0189992048 0.0189992038 0.0189992032 0.0189992031 0.018999203
 0.0189992007 0.0189992003 0.0189991992 0.0189991959 0.0189991924 0.0189991867
 0.0189991866 0.0189991854 0.0189991853 0.0189991853 0.0189991839 0.0189991833
 0.0189991829 0.018999179  0.0189991775 0.0189991755 0.0189991739 0.0189991728
 0.0189991707 0.0189991703 0.0189991645 0.0189991591 0.018999156  0.0189991488
 0.0189991485 0.0189991482 0.0189991453 0.0189991452 0.0189991433 0.0189991421
 0.0189991417 0.0189991352 0.0189991301 0.0189991294 0.0189991289 0.0189991241
 0.0189991207 0.0189991137 0.0189991119 0.018999111  0.0189991079 0.0189991057
 0.0189991017 0.0189991015 0.0189990988 0.0189990965 0.0189990921 0.0189990917
 0.0189990902 0.0189990849 0.018999084  0.0189990672 0.0189990629 0.0189990606
 0.0189990604 0.0189990599 0.0189990555 0.0189990533 0.0189990531 0.01899905
 0.0189990494 0.0189990492 0.0189990441 0.0189990389 0.018999031  0.0189990306
 0.0189990296 0.0189990269 0.0189990251 0.0189990248 0.0189990242 0.0189990222
 0.0189990222 0.0189990203 0.0189990162 0.018999015  0.018999014  0.0189990125
 0.0189990124 0.0189990121 0.0189990109 0.0189990083 0.0189990072 0.0189990039
 0.018999001  0.0189990008 0.0189989973 0.0189989958 0.0189989957 0.0189989921
 0.0189989908 0.0189989887 0.0189989837 0.0189989813 0.0189989799 0.0189989794
 0.0189989784 0.0189989783 0.018998977  0.0189989753 0.0189989743 0.0189989722
 0.0189989695 0.0189989686 0.0189989684 0.0189989683 0.0189989668 0.0189989641
 0.0189989621 0.0189989616 0.0189989608 0.0189989587 0.018998952  0.0189989444
 0.0189989436 0.0189989385 0.0189989371 0.0189989357 0.0189989351 0.0189989347
 0.0189989314 0.018998931  0.0189989255 0.0189989248 0.0189989244 0.0189989211
 0.0189989183 0.0189989164 0.0189989142 0.0189989126 0.0189989112 0.0189989101
 0.0189989062 0.0189989039 0.0189989003 0.0189989    0.0189989    0.0189988968
 0.0189988966 0.0189988942 0.0189988878 0.0189988876 0.0189988853 0.0189988843
 0.0189988797 0.0189988762 0.0189988754 0.0189988742 0.0189988715 0.0189988696
 0.0189988662 0.0189988639 0.018998861  0.0189988585 0.0189988584 0.0189988569
 0.0189988569 0.0189988552 0.0189988549 0.0189988537 0.0189988517 0.0189988453
 0.0189988443 0.0189988428 0.0189988399 0.0189988377 0.0189988344 0.0189988236
 0.0189988222 0.0189988218 0.0189988211 0.0189988177 0.0189988174 0.0189988151
 0.0189988119 0.0189988096 0.0189988094 0.0189988077 0.018998806  0.0189988042
 0.0189988039 0.0189988021 0.0189987989 0.0189987986 0.0189987978 0.0189987977
 0.0189987975 0.0189987962 0.0189987957 0.0189987941 0.018998793  0.0189987918
 0.0189987911 0.0189987787 0.0150022645 0.0150019261 0.0150017199 0.0150017005
 0.0150016397 0.0150015751 0.0150014394 0.0150014243 0.0150013737 0.015001359
 0.0150013516 0.0150013211 0.0150013037 0.0150012419 0.0150012151 0.0150010788
 0.0150010386 0.0150010303 0.0150010075 0.0150010018 0.0150010016 0.0150009926
 0.015000961  0.0150009069 0.0150008869 0.0150008817 0.0150008483 0.0150007596
 0.0150007495 0.0150007489 0.0150007356 0.0150006985 0.0150006983 0.0150006918
 0.0150006467 0.015000643  0.0150006401 0.0150006388 0.0150006387 0.0150006286
 0.0150006233 0.0150006074 0.0150005973 0.0150005958 0.0150005925 0.015000554
 0.0150005537 0.0150005507 0.0150005501 0.015000531  0.0150005298 0.0150005277
 0.0150005172 0.0150005135 0.0150005119 0.0150004861 0.0150004221 0.0150004144
 0.01500041   0.0150004025 0.0150003997 0.0150003939 0.0150003623 0.015000339
 0.0150003367 0.0150002891 0.0150002874 0.0150002827 0.0150002806 0.0150002675
 0.0150002628 0.0150002488 0.0150002457 0.0150002381 0.015000212  0.0150001932
 0.0150001827 0.0150001658 0.0150001628 0.0150001551 0.0150001462 0.0150001439
 0.0150001368 0.0150001267 0.0150001138 0.0150000982 0.015000097  0.0150000682
 0.0150000597 0.0150000394 0.0150000169 0.0150000151 0.0149999894 0.0149999754
 0.0149999753 0.014999965  0.0149999483 0.0149999429 0.014999942  0.0149999335
 0.0149999288 0.0149999262 0.0149999258 0.0149999208 0.0149999175 0.0149999131
 0.0149999015 0.014999899  0.0149998758 0.0149998744 0.0149998708 0.0149998701
 0.0149998578 0.0149998429 0.0149998303 0.0149998206 0.0149998037 0.0149997967
 0.0149997911 0.0149997758 0.0149997718 0.0149997681 0.0149997647 0.014999739
 0.014999732  0.0149997304 0.014999704  0.0149996959 0.0149996933 0.0149996794
 0.0149996736 0.0149996525 0.0149996457 0.0149996447 0.0149996435 0.0149996418
 0.0149996403 0.0149996315 0.0149996281 0.0149996281 0.014999628  0.0149996101
 0.0149996095 0.0149996082 0.0149996072 0.0149996031 0.0149995991 0.0149995957
 0.0149995948 0.014999591  0.0149995906 0.0149995768 0.0149995681 0.0149995594
 0.0149995553 0.014999553  0.014999536  0.0149995279 0.0149995064 0.0149994976
 0.0149994903 0.0149994864 0.0149994821 0.0149994727 0.0149994675 0.0149994667
 0.0149994588 0.0149994547 0.0149994427 0.014999439  0.0149994283 0.0149994263
 0.0149994186 0.0149994183 0.0149994181 0.0149993805 0.0149993792 0.0149993788
 0.0149993785 0.0149993747 0.0149993688 0.0149993668 0.0149993615 0.0149993565
 0.0149993549 0.0149993467 0.0149993305 0.0149993284 0.0149993281 0.0149993238
 0.0149993215 0.0149993167 0.0149993157 0.0149993027 0.0149993013 0.0149992955
 0.0149992893 0.0149992846 0.0149992807 0.0149992756 0.0149992626 0.014999253
 0.0149992471 0.0149992431 0.0149992333 0.0149992259 0.0149992223 0.0149992195
 0.0149992111 0.0149992092 0.0149992071 0.0149992046 0.0149992039 0.0149992005
 0.0149991947 0.014999189  0.0149991884 0.014999186  0.0149991781 0.0149991713
 0.0149991658 0.0149991627 0.0149991567 0.0149991567 0.014999155  0.0149991525
 0.0149991485 0.0149991477 0.0149991473 0.0149991458 0.0149991416 0.0149991413
 0.0149991339 0.0149991328 0.0149991291 0.0149991246 0.014999124  0.0149991184
 0.0149991034 0.0149990993 0.0149990981 0.0149990856 0.014999078  0.0149990774
 0.0149990768 0.0149990713 0.0149990697 0.0149990685 0.0149990636 0.0149990564
 0.0149990484 0.0149990427 0.0149990357 0.0149990355 0.0149990298 0.0149990229
 0.0149990213 0.0149990172 0.0149990113 0.0149990054 0.0149990032 0.0149990008
 0.014999     0.0149989846 0.0149989806 0.0149989746 0.0149989744 0.0149989737
 0.0149989666 0.01499896   0.0149989509 0.0149989465 0.014998944  0.0149989434
 0.0149989432 0.0149989388 0.0149989327 0.0149989295 0.0149989245 0.0149989156
 0.0149989102 0.0149988989 0.0149988989 0.0149988989 0.0149988989 0.0149988989
 0.0149988989 0.0149988989 0.0149988989 0.0149988989 0.0149988989 0.0149988989
 0.0149988989 0.0149988989 0.0149988989 0.0149988989 0.0149988989 0.0149988989
 0.0149988989 0.0149988989 0.0149988989 0.0149988989 0.0149988935 0.0149988886
 0.0149988867 0.0149988838 0.014998882  0.0149988808 0.0149988808 0.0149988783
 0.0149988744 0.0149988707 0.0149988694 0.0149988669 0.0149988628 0.0149988616
 0.014998861  0.0149988597 0.0149988596 0.0149988413 0.0149988381 0.0149988277
 0.0149988263 0.0149988229 0.0149988217 0.0149988017 0.0149988004 0.0149987994
 0.0149987948 0.0149987892 0.0149987872 0.0149987857 0.014998783  0.0149987767
 0.0149987613 0.0149987543 0.0149987542 0.0149987496 0.0149987438 0.0149987374
 0.0149987369 0.0149987302 0.0149987234]

In [12]:
spf_tb.show_traj_phase_map_fre(theta_max_fre)
# spf_tb.show_traj_phase_map_fre(phi_max_fre)
# spf_tb.show_traj_phase_map_fre(psi_max_fre)
# spf_tb.show_traj_phase_map_fre(eta_max_fre)


Out[12]:
True

In [13]:
# put images with same frequence into a subdirect
importlib.reload(spf_tb)
def t_show_idx(iidx):
    theta = type_fre.index.values[iidx[0][0]]
    phi = type_fre.columns.values[iidx[1][0]]
    print(theta, phi)
    spf_tb.show_pickle_results(job_dir, theta, phi, table_name)
    return True

tfre = theta_max_fre.copy()
check_fre_list = [0.0150, 0.0190]
atol_fre_list =  [0.0002, 0.0002]

type_fre = tfre.copy()
type_fre.iloc[:, :] = len(check_fre_list) 
for i0, (check_fre, atol_fre) in enumerate(zip(check_fre_list, atol_fre_list)):
    use_idx = np.isclose(tfre, check_fre, rtol=0, atol=atol_fre)
    type_fre.iloc[use_idx] = i0
    iidx = np.where(use_idx)
    t_show_idx(iidx)

# plot one of the remaind cases
if np.any(type_fre.values == len(check_fre_list)):
    iidx = np.where(type_fre.values == len(check_fre_list))
    t_show_idx(iidx)

spf_tb.show_traj_phase_map_type(type_fre)
spf_tb.save_separate_angleList_fft(job_dir, tfre, check_fre_list, atol_fre_list)


0.0 1.714
-ini_theta 0.000000 -ini_phi 0.000000 -ini_psi 3.141593
/home/zhangji/stokes_flow_master/codeStore/support_fun_table.py:615: UserWarning: This figure includes Axes that are not compatible with tight_layout, so results might be incorrect.
  plt.tight_layout()
0.0 0.0
-ini_theta 0.000000 -ini_phi 0.000000 -ini_psi 0.000000
0.143 0.571
-ini_theta 0.142800 -ini_phi 0.571199 -ini_psi 0.000000
frequency in the range (0.014800, 0.015200)
remove folder ecoC01B05_wt0.2_psi-0a/fre_separate/fre_0.015000
make folder ecoC01B05_wt0.2_psi-0a/fre_separate/fre_0.015000
frequency in the range (0.018800, 0.019200)
remove folder ecoC01B05_wt0.2_psi-0a/fre_separate/fre_0.019000
make folder ecoC01B05_wt0.2_psi-0a/fre_separate/fre_0.019000
remove folder ecoC01B05_wt0.2_psi-0a/fre_separate/remainders
make folder ecoC01B05_wt0.2_psi-0a/fre_separate/remainders

Out[13]:
True

In [ ]:
# create phase map
importlib.reload(spf_tb)
def tget_ax0():
    n_xticks = 32
    xticks = np.arange(n_xticks)
    fig = plt.figure(figsize=(20, 20))
    fig.patch.set_facecolor('white')
    axs = []
    axs.append(fig.add_subplot(221, polar=True))
    axs.append(fig.add_subplot(222, polar=True))
    axs.append(fig.add_subplot(223, polar=True))
    axs.append(fig.add_subplot(224, polar=True))
    for ax0 in axs:
        ax0.set_xticks(xticks / n_xticks * 2 * np.pi)
        ax0.set_xticklabels(['$\dfrac{%d}{%d}2\pi$' % (i0, n_xticks) for i0 in xticks])
        ax0.set_yticklabels([])
        ax0.set_ylim(0, np.pi)
    plt.tight_layout()
    return fig, axs

check_fre_list = [1.000, 0.0220, 1.0000, 0.0540]
atol_list =      [0.004, 0.0005, 0.0005, 0.0005]
color_list =     ['b',   'g',    'r',    'c',   'm', 'y', 'k']
psi_lim_fct = 20
resampling_fct = 10

data0['use_max_fre'] = data0.theta_max_fre
case_path_list = spf_tb.separate_fre_path(check_fre_list, atol_list, data0, pickle_path_list)
for idx, psi_lim1 in enumerate(np.linspace(0, 2 * np.pi, psi_lim_fct * 16, 
                                           endpoint=False)[::psi_lim_fct]):
    fig, (ax0, ax1, ax2, ax3) = tget_ax0()
    ax_list = [ax0, ax0, ax1, ax2, ax3]
    psi_lim = (psi_lim1, psi_lim1 + 2 * np.pi / (psi_lim_fct * 16))
    desc = '$\psi\in[%.3f\pi, %.3f\pi)$' % ((psi_lim[0] / np.pi), (psi_lim[1] / np.pi))
    fig.suptitle(desc, fontsize=fontsize*0.8)
    for check_fre, case_path, color, axi in zip(check_fre_list, case_path_list, color_list, ax_list):
        thandle = '%f' % check_fre
        spf_tb.draw_phase_map_theta(case_path, color, psi_lim, axs=(axi, ax_list[-1]), thandle=thandle, 
                                    resampling=True, resampling_fct=resampling_fct)
    tdir = os.path.join(PWD, job_dir, 'phase_mape_fre')
    if not os.path.exists(tdir):
        os.makedirs(tdir)
    figname = os.path.join(tdir, '%04d.png' % (idx))
    fig.savefig(os.path.join(tdir, figname))
    print('save to %s' % figname)
    plt.close(fig)


/home/zhangji/stokes_flow_master/codeStore/support_fun_table.py:12: UserWarning: matplotlib.pyplot as already been imported, this call will have no effect.
  matplotlib.use('agg')
0th frequence range: (0.996000, 1.004000)
1th frequence range: (0.021500, 0.022500)
2th frequence range: (0.999500, 1.000500)
3th frequence range: (0.053500, 0.054500)
tmax_fre=0.048002, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.639_ph0.401_ps0.000_D20190714_T225427.pickle
tmax_fre=0.052003, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th0.683_ph2.941_ps0.000_D20190715_T023809.pickle
tmax_fre=0.035997, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.639_ph1.738_ps0.000_D20190715_T020546.pickle
tmax_fre=0.052011, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.366_ph3.075_ps0.000_D20190715_T024550.pickle
tmax_fre=0.051998, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.229_ph3.208_ps0.000_D20190715_T025014.pickle
tmax_fre=0.036003, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.503_ph2.005_ps0.000_D20190715_T020546.pickle
tmax_fre=0.052012, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th2.322_ph3.476_ps0.000_D20190715_T031731.pickle
tmax_fre=0.052001, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th0.683_ph3.075_ps0.000_D20190715_T024550.pickle
tmax_fre=0.052001, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th2.322_ph3.208_ps0.000_D20190715_T025013.pickle
tmax_fre=0.051998, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.093_ph3.208_ps0.000_D20190715_T025013.pickle
tmax_fre=0.050005, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.639_ph0.000_ps0.000_D20190714_T225427.pickle
tmax_fre=0.052002, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.366_ph3.208_ps0.000_D20190715_T025014.pickle
tmax_fre=0.052001, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th0.820_ph3.075_ps0.000_D20190715_T024550.pickle
tmax_fre=0.051997, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th2.459_ph3.342_ps0.000_D20190715_T031151.pickle
tmax_fre=0.052005, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.093_ph2.941_ps0.000_D20190715_T023808.pickle
tmax_fre=0.050003, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th3.005_ph0.134_ps0.000_D20190714_T225427.pickle
tmax_fre=0.052011, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th2.185_ph3.342_ps0.000_D20190715_T031150.pickle
tmax_fre=0.052004, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.639_ph3.208_ps0.000_D20190715_T025013.pickle
tmax_fre=0.039005, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.639_ph4.011_ps0.000_D20190715_T032724.pickle
tmax_fre=0.049996, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.366_ph6.150_ps0.000_D20190715_T045619.pickle
tmax_fre=0.035999, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.639_ph1.069_ps0.000_D20190715_T005116.pickle
tmax_fre=0.052003, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th0.956_ph2.941_ps0.000_D20190715_T023809.pickle
tmax_fre=0.035999, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.639_ph1.604_ps0.000_D20190715_T020546.pickle
tmax_fre=0.035001, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.503_ph4.679_ps0.000_D20190715_T040314.pickle
tmax_fre=0.052007, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.503_ph3.075_ps0.000_D20190715_T024550.pickle
tmax_fre=0.035004, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.503_ph1.471_ps0.000_D20190715_T013943.pickle
tmax_fre=0.050013, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.229_ph6.150_ps0.000_D20190715_T045619.pickle
tmax_fre=0.037003, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.639_ph5.080_ps0.000_D20190715_T040605.pickle
tmax_fre=0.051999, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th0.137_ph3.075_ps0.000_D20190715_T024550.pickle
tmax_fre=0.049997, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th2.732_ph0.134_ps0.000_D20190714_T225427.pickle
tmax_fre=0.050005, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th0.956_ph0.000_ps0.000_D20190714_T225427.pickle
tmax_fre=0.048009, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.912_ph0.401_ps0.000_D20190714_T225427.pickle
tmax_fre=0.052011, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th2.459_ph3.208_ps0.000_D20190715_T025014.pickle
tmax_fre=0.035998, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.503_ph4.412_ps0.000_D20190715_T035348.pickle
tmax_fre=0.052006, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th2.868_ph3.476_ps0.000_D20190715_T031732.pickle
tmax_fre=0.037005, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.639_ph4.144_ps0.000_D20190715_T032725.pickle
tmax_fre=0.052001, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.912_ph3.208_ps0.000_D20190715_T025014.pickle
tmax_fre=0.051999, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th0.546_ph2.941_ps0.000_D20190715_T023808.pickle
tmax_fre=0.035998, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.503_ph1.203_ps0.000_D20190715_T011130.pickle
tmax_fre=0.036000, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.639_ph4.412_ps0.000_D20190715_T035348.pickle
tmax_fre=0.052007, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th3.005_ph3.208_ps0.000_D20190715_T025013.pickle
tmax_fre=0.052017, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th0.956_ph3.208_ps0.000_D20190715_T025013.pickle
tmax_fre=0.051997, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th2.732_ph3.342_ps0.000_D20190715_T031150.pickle
tmax_fre=0.036002, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.503_ph5.214_ps0.000_D20190715_T040610.pickle
tmax_fre=0.052003, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th0.956_ph3.075_ps0.000_D20190715_T024550.pickle
tmax_fre=0.035001, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.503_ph1.604_ps0.000_D20190715_T020546.pickle
tmax_fre=0.051999, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th3.005_ph3.476_ps0.000_D20190715_T031732.pickle
tmax_fre=0.052012, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th0.546_ph2.807_ps0.000_D20190715_T023653.pickle
tmax_fre=0.052001, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th0.820_ph2.941_ps0.000_D20190715_T023809.pickle
tmax_fre=0.052000, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th2.868_ph3.342_ps0.000_D20190715_T031151.pickle
tmax_fre=0.036002, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.639_ph4.813_ps0.000_D20190715_T040330.pickle
tmax_fre=0.036003, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.639_ph1.203_ps0.000_D20190715_T011131.pickle
tmax_fre=0.036007, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.503_ph2.139_ps0.000_D20190715_T021010.pickle
tmax_fre=0.051997, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th2.049_ph3.342_ps0.000_D20190715_T031151.pickle
tmax_fre=0.050010, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.912_ph0.000_ps0.000_D20190714_T225427.pickle
tmax_fre=0.036006, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.639_ph4.946_ps0.000_D20190715_T040521.pickle
tmax_fre=0.036000, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.639_ph4.545_ps0.000_D20190715_T040119.pickle
tmax_fre=0.051997, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th0.273_ph3.075_ps0.000_D20190715_T024550.pickle
tmax_fre=0.051997, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th0.273_ph2.941_ps0.000_D20190715_T023808.pickle
tmax_fre=0.036003, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.503_ph5.080_ps0.000_D20190715_T040604.pickle
tmax_fre=0.052000, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.912_ph3.342_ps0.000_D20190715_T031150.pickle
tmax_fre=0.036005, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.639_ph4.679_ps0.000_D20190715_T040314.pickle
tmax_fre=0.051997, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th0.410_ph2.807_ps0.000_D20190715_T142926.pickle
tmax_fre=0.035000, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.503_ph1.738_ps0.000_D20190715_T020547.pickle
tmax_fre=0.051999, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th0.410_ph2.941_ps0.000_D20190715_T023809.pickle
tmax_fre=0.051997, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th0.137_ph2.807_ps0.000_D20190715_T023653.pickle
tmax_fre=0.052001, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.776_ph3.342_ps0.000_D20190715_T031151.pickle
tmax_fre=0.036997, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.503_ph5.347_ps0.000_D20190715_T042036.pickle
tmax_fre=0.049998, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th0.820_ph6.016_ps0.000_D20190715_T045020.pickle
tmax_fre=0.051997, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th2.868_ph3.208_ps0.000_D20190715_T025013.pickle
tmax_fre=0.036998, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.503_ph4.278_ps0.000_D20190715_T033910.pickle
tmax_fre=0.045999, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th3.142_ph3.476_ps0.000_D20190715_T031731.pickle
tmax_fre=0.053009, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th3.142_ph0.267_ps0.000_D20190714_T225427.pickle
tmax_fre=0.051996, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.503_ph5.481_ps0.000_D20190715_T043702.pickle
tmax_fre=0.035999, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.639_ph1.471_ps0.000_D20190715_T013943.pickle
tmax_fre=0.052000, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.366_ph3.342_ps0.000_D20190715_T031151.pickle
tmax_fre=0.052004, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.503_ph3.208_ps0.000_D20190715_T025014.pickle
tmax_fre=0.052000, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th2.185_ph3.476_ps0.000_D20190715_T031731.pickle
tmax_fre=0.052003, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.776_ph3.208_ps0.000_D20190715_T025014.pickle
tmax_fre=0.051999, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.776_ph3.476_ps0.000_D20190715_T031732.pickle
tmax_fre=0.049998, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.639_ph0.267_ps0.000_D20190714_T225427.pickle
tmax_fre=0.052006, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.639_ph3.075_ps0.000_D20190715_T024550.pickle
tmax_fre=0.049996, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th0.956_ph6.283_ps0.000_D20190715_T045619.pickle
tmax_fre=0.036003, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.639_ph1.872_ps0.000_D20190715_T020547.pickle
tmax_fre=0.052001, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th3.005_ph3.342_ps0.000_D20190715_T031151.pickle
tmax_fre=0.038000, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.503_ph2.273_ps0.000_D20190715_T021007.pickle
tmax_fre=0.050002, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.776_ph0.267_ps0.000_D20190714_T225427.pickle
tmax_fre=0.050000, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.912_ph6.283_ps0.000_D20190715_T045619.pickle
tmax_fre=0.052012, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th0.546_ph3.075_ps0.000_D20190715_T024550.pickle
tmax_fre=0.051999, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.503_ph3.342_ps0.000_D20190715_T031150.pickle
tmax_fre=0.035999, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.503_ph4.545_ps0.000_D20190715_T040118.pickle
tmax_fre=0.051997, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th2.459_ph3.476_ps0.000_D20190715_T031731.pickle
tmax_fre=0.052011, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th2.049_ph3.476_ps0.000_D20190715_T031732.pickle
tmax_fre=0.034998, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.503_ph4.813_ps0.000_D20190715_T040331.pickle
tmax_fre=0.049999, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th3.142_ph3.208_ps0.000_D20190715_T025014.pickle
tmax_fre=0.048007, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.093_ph6.016_ps0.000_D20190715_T045021.pickle
tmax_fre=0.046996, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th0.683_ph2.807_ps0.000_D20190715_T023653.pickle
tmax_fre=0.035999, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.639_ph1.337_ps0.000_D20190715_T011429.pickle
tmax_fre=0.049997, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th0.683_ph6.016_ps0.000_D20190715_T142926.pickle
tmax_fre=0.049999, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.639_ph6.283_ps0.000_D20190715_T045619.pickle
tmax_fre=0.051998, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.639_ph3.342_ps0.000_D20190715_T031150.pickle
tmax_fre=0.051997, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.229_ph3.075_ps0.000_D20190715_T024550.pickle
tmax_fre=0.035006, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.503_ph1.872_ps0.000_D20190715_T020547.pickle
tmax_fre=0.052006, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th2.595_ph3.342_ps0.000_D20190715_T031150.pickle
tmax_fre=0.052003, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.776_ph3.075_ps0.000_D20190715_T024550.pickle
tmax_fre=0.052009, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.912_ph3.476_ps0.000_D20190715_T031731.pickle
tmax_fre=0.052002, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th0.410_ph2.807_ps0.000_D20190715_T023652.pickle
tmax_fre=0.036997, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.503_ph1.069_ps0.000_D20190715_T005116.pickle
tmax_fre=0.051997, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th2.185_ph3.208_ps0.000_D20190715_T025013.pickle
tmax_fre=0.045997, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th0.683_ph6.016_ps0.000_D20190715_T045020.pickle
tmax_fre=0.052011, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th2.595_ph3.476_ps0.000_D20190715_T031731.pickle
tmax_fre=0.036003, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.503_ph1.337_ps0.000_D20190715_T011428.pickle
tmax_fre=0.051999, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th2.322_ph3.342_ps0.000_D20190715_T031151.pickle
tmax_fre=0.037008, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.639_ph0.936_ps0.000_D20190715_T005118.pickle
tmax_fre=0.047998, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.912_ph0.267_ps0.000_D20190714_T225427.pickle
tmax_fre=0.037000, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.639_ph2.005_ps0.000_D20190715_T020546.pickle
tmax_fre=0.051997, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th2.049_ph3.208_ps0.000_D20190715_T025014.pickle
tmax_fre=0.052018, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.093_ph3.075_ps0.000_D20190715_T024550.pickle
tmax_fre=0.035000, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.503_ph4.946_ps0.000_D20190715_T040522.pickle
tmax_fre=0.051997, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th2.732_ph3.476_ps0.000_D20190715_T031731.pickle
tmax_fre=0.052007, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th3.142_ph0.134_ps0.000_D20190714_T225427.pickle
tmax_fre=0.052005, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th0.137_ph2.941_ps0.000_D20190715_T023808.pickle
tmax_fre=0.036007, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.639_ph4.278_ps0.000_D20190715_T033910.pickle
tmax_fre=0.052002, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th0.410_ph3.075_ps0.000_D20190715_T024550.pickle
tmax_fre=0.052000, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th2.595_ph3.208_ps0.000_D20190715_T025013.pickle
tmax_fre=0.049997, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th1.366_ph0.134_ps0.000_D20190714_T225427.pickle
tmax_fre=0.052009, n_match=0 /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/th0.273_ph2.807_ps0.000_D20190715_T023653.pickle



save to /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/phase_mape_fre/0000.png



save to /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/phase_mape_fre/0001.png



save to /home/zhangji/stokes_flow_master/head_Force/do_calculate_table/hlxC01_a_psi-0e/phase_mape_fre/0002.png


In [ ]:

calculate the phase map of stable trajectory using the KMeans method.


In [186]:
# show phase map of theta-phi, part 1
importlib.reload(spf_tb)
job_dir = 'ecoC01B05_T0.01_psi-0a'
table_name = 'ecoC01B05_T0.01'

t_headle = '(.*?).pickle'
t_path = os.listdir(os.path.join(PWD, job_dir))
filename_list = [filename for filename in os.listdir(os.path.join(PWD, job_dir)) 
                 if re.match(t_headle, filename) is not None]
ini_theta_list = []
ini_phi_list = []
lst_eta_list = []
pickle_path_list = []
idx_list = []
theta_primary_fre_list = []
phi_primary_fre_list = []
psi_primary_fre_list = []
for i0, tname in enumerate(tqdm_notebook(filename_list[:])):
    tpath = os.path.join(PWD, job_dir, tname)
    with open(tpath, 'rb') as handle:
        tpick = pickle.load(handle)
    ini_theta_list.append(tpick['ini_theta'])
    ini_phi_list.append(tpick['ini_phi'])
    lst_eta_list.append(tpick['Table_eta'][-1])
    pickle_path_list.append(tpath)
    idx_list.append(i0)
    
    # fft rule
    tx = tpick['Table_t']
    tmin = np.max((0, tx.max() - 1000))
    idx = tx > tmin
    # the last frequence is the major frequence. 
    use_fft_number = 3
    t1 = -use_fft_number - 1
    theta_primary_fre_list.append(spf_tb.get_primary_fft_fre(tx[idx], tpick['Table_theta'][idx])[t1:-1])
    phi_primary_fre_list.append(spf_tb.get_primary_fft_fre(tx[idx], tpick['Table_phi'][idx])[t1:-1])
    psi_primary_fre_list.append(spf_tb.get_primary_fft_fre(tx[idx], tpick['Table_psi'][idx])[t1:-1])


/home/zhangji/anaconda3/lib/python3.5/site-packages/ipykernel/__main__.py:17: TqdmDeprecationWarning: This function will be removed in tqdm==5.0.0
Please use `tqdm.notebook.tqdm` instead of `tqdm.tqdm_notebook`


In [216]:
# show phase map of theta-phi, part 2
def show_phase_map(tuse):
    fig = plt.figure(figsize=(20, 12), dpi=300)
    fig.patch.set_facecolor('white')
    ax0 = fig.add_subplot(111, polar=True)
    n_xticks = 32
    xticks = np.arange(n_xticks)
    ax0.set_xticks(xticks / n_xticks * 2 * np.pi)
    ax0.set_xticklabels(['$\dfrac{%d}{%d}2\pi$' % (i0, n_xticks) for i0 in xticks])
    ax0.set_yticklabels([])
    ax0.set_ylim(0, np.pi)
    tdata = tuse.values
    im = ax0.pcolor(tuse.columns.values, tuse.index.values, tdata, 
                    cmap=plt.get_cmap('Set2', np.nanmax(tdata)+1), 
                    vmin=np.nanmin(tdata)-.5, vmax=np.nanmax(tdata)+.5)
    ticks = np.arange(np.nanmin(tdata), np.nanmax(tdata)+1)
    fig.colorbar(im, ax=ax0, orientation='vertical', ticks=ticks).ax.tick_params(labelsize=fontsize)

In [257]:
np.around(np.pi, 3)


Out[257]:
3.142

In [239]:
from sklearn.cluster import KMeans
from sklearn.mixture import GaussianMixture

use_data = np.hstack((np.vstack(theta_primary_fre_list)[:, 1:], 
                      np.vstack(phi_primary_fre_list)[:, 1:]))
#KMeans
km = KMeans(n_clusters=6, n_init=10, max_iter=1000, tol=1e-9, precompute_distances=True, n_jobs=-1, random_state=0)
km.fit(use_data)
km.predict(use_data)
tlabels = km.labels_

# # personal process
# tlabels[tlabels == 4] = 3

tdata1 = pd.DataFrame({'ini_theta': np.around(ini_theta_list, 3), 
                      'ini_phi': np.around(ini_phi_list, 3), 
                      'lst_eta': np.around(lst_eta_list, 3), 
                      'use_fre': tlabels, 
                      'data_idx': idx_list })
tdata1 = tdata1.pivot_table(index=['ini_theta'], columns=['ini_phi'])
show_phase_map(tdata1.use_fre)



In [250]:
np.array(ini_theta_list)[tlabels==show_tlabel]


Out[250]:
array([0.81955, 0.40977, 2.18546, 0.81955, 0.68295, 0.54636, 0.81955, 1.77568, 2.59523,
       2.59523, 1.5025 , 2.86841, 0.13659, 2.04887, 2.04887, 1.5025 , 1.77568, 2.59523,
       0.95614, 0.40977, 0.81955, 0.40977, 2.04887, 1.77568, 1.63909, 0.13659, 1.77568,
       1.36591, 1.63909, 1.36591, 1.77568, 2.32205, 3.005  , 2.32205, 0.54636, 2.32205,
       1.36591, 3.14159, 2.18546, 3.005  , 0.81955, 2.73182, 2.04887, 1.09273, 3.14159,
       2.86841, 0.27318, 1.77568, 2.18546, 0.27318, 3.14159, 2.73182, 1.5025 , 0.54636,
       1.36591, 1.5025 , 2.45864, 1.63909, 3.005  , 0.95614, 1.36591, 2.59523, 1.77568,
       0.81955, 1.63909, 2.18546, 2.04887, 0.54636, 0.40977, 0.13659, 1.63909, 2.18546,
       2.18546, 0.40977, 1.22932, 2.73182, 1.77568, 2.32205, 3.14159, 1.09273, 0.27318,
       2.59523, 1.36591, 1.36591, 3.005  , 2.18546, 2.59523, 2.45864, 0.40977, 1.09273,
       2.59523, 1.77568, 2.45864, 1.5025 , 0.27318, 1.63909, 2.04887, 0.95614, 2.45864,
       0.68295, 1.36591, 1.36591, 2.59523, 1.22932, 2.32205, 2.59523, 2.45864, 2.86841,
       0.54636, 2.45864, 2.86841, 2.32205, 1.77568, 1.22932, 1.22932, 2.73182, 2.86841,
       0.54636, 0.54636, 2.86841, 2.86841, 1.22932, 1.5025 , 2.73182, 1.36591, 1.5025 ,
       1.36591, 2.59523, 1.63909, 0.40977, 0.81955, 1.77568, 0.68295, 0.27318, 1.77568,
       0.68295, 1.36591, 0.40977, 0.95614, 1.36591, 0.54636, 2.32205, 0.27318, 2.45864,
       1.36591, 0.81955, 0.68295, 1.22932, 3.14159, 2.04887, 1.09273, 0.13659, 0.95614,
       3.005  , 2.18546, 2.32205, 0.40977, 0.95614, 2.73182, 0.13659, 1.5025 , 2.45864,
       0.13659, 2.04887, 0.68295, 2.18546, 1.77568, 0.40977, 0.54636, 0.13659, 1.5025 ,
       0.95614, 0.95614, 1.36591, 0.40977, 0.81955, 0.95614, 1.77568, 2.86841, 0.68295,
       0.27318, 0.68295, 2.32205, 0.27318, 0.13659, 0.54636, 0.27318, 1.36591, 1.91227,
       2.73182, 2.18546, 2.59523, 3.14159, 3.14159, 2.32205, 2.04887, 0.40977, 2.59523,
       3.14159, 1.5025 , 2.59523, 3.005  , 0.54636, 2.18546, 0.13659, 0.68295, 2.86841,
       3.005  , 2.73182, 2.73182, 3.005  , 0.95614, 1.5025 , 2.32205, 1.77568, 3.14159,
       2.45864, 0.81955, 0.68295, 3.005  , 1.91227, 2.86841, 0.54636, 1.36591, 1.91227,
       1.63909, 0.54636, 0.95614, 2.73182, 0.68295, 1.36591, 2.18546, 3.14159])

In [251]:
importlib.reload(spf_tb)
show_tlabel = 0

for theta, phi in zip(np.array(ini_theta_list)[tlabels==show_tlabel][:10], 
                         np.array(ini_phi_list)[tlabels==show_tlabel][:10]): 
    spf_tb.show_pickle_results(job_dir, theta, phi, table_name, fast_mode=1)


-ini_theta 0.819546 -ini_phi 1.604218 -ini_psi 0.000000
-ini_theta 0.409773 -ini_phi 0.133685 -ini_psi 0.000000
-ini_theta 2.185456 -ini_phi 0.534739 -ini_psi 0.000000
-ini_theta 0.819546 -ini_phi 2.540011 -ini_psi 0.000000
-ini_theta 0.682955 -ini_phi 0.133685 -ini_psi 0.000000
-ini_theta 0.546364 -ini_phi 0.534739 -ini_psi 0.000000
-ini_theta 0.819546 -ini_phi 0.133685 -ini_psi 0.000000
-ini_theta 1.775683 -ini_phi 0.935794 -ini_psi 0.000000
-ini_theta 2.595229 -ini_phi 0.267370 -ini_psi 0.000000
-ini_theta 2.595229 -ini_phi 0.133685 -ini_psi 0.000000

In [241]:
importlib.reload(spf_tb)

for show_tlabel in np.arange(tlabels.max()+1): 
    theta = np.array(ini_theta_list)[tlabels==show_tlabel][0]
    phi = np.array(ini_phi_list)[tlabels==show_tlabel][0]
    spf_tb.show_pickle_results(job_dir, theta, phi, table_name, fast_mode=2)


-ini_theta 0.819546 -ini_phi 1.604218 -ini_psi 0.000000
-ini_theta 3.005002 -ini_phi 0.401054 -ini_psi 0.000000
-ini_theta 1.639092 -ini_phi 0.267370 -ini_psi 0.000000
-ini_theta 3.141592 -ini_phi 0.334212 -ini_psi 0.000000
-ini_theta 2.595229 -ini_phi 2.807381 -ini_psi 0.000000
-ini_theta 2.458638 -ini_phi 3.074750 -ini_psi 0.000000

In [ ]:
tlabels=