In [1]:
%matplotlib inline
%pylab inline
In [10]:
import menpo.io as mio
from menpo.landmark import labeller, ibug_face_66
from menpofast.utils import convert_from_menpo
path = '/data/'
group = 'ibug_face_66'
training_images_color = []
training_images = []
for i in mio.import_images(path + 'PhD/DataBases/faces/ibug/', verbose=True,
max_images=None):
# convert the image from menpo Image to menpofast Image (channels at front)
i = convert_from_menpo(i)
labeller(i, 'PTS', eval(group))
i.crop_to_landmarks_proportion_inplace(0.5, group='PTS')
i = i.rescale_landmarks_to_diagonal_range(200, group=group)
training_images_color.append(i)
if i.n_channels == 3:
ii = i.as_greyscale(mode='average')
training_images.append(ii)
In [11]:
from menpo.visualize import visualize_images
visualize_images(training_images_color, colours='r', linewidths=2)
In [12]:
img = training_images_color[98]
img.view_widget(colours='r', linewidths=2)
In [16]:
from menpofast.feature import fast_dsift
img = training_images[98]
masked_img = img.as_masked()
masked_img.build_mask_around_landmarks((34, 34), group=group)
dsift_img = fast_dsift(masked_img)
dsift_img.view_widget(colours='r', linewidths=2)
In [ ]:
import menpo.io as mio
from menpo.landmark import labeller, streetscene_car_view_1
from menpofast.utils import convert_from_menpo
training_images_color = []
training_images = []
for i in mio.import_images('/data/PhD/DataBases/cars/cmu_car_data1/view1/', verbose=True,
max_images=20):
# convert the image from menpo Image to menpofast Image (channels at front)
i = convert_from_menpo(i)
labeller(i, 'PTS', streetscene_car_view_1)
i.crop_to_landmarks_proportion_inplace(0.5, group='streetscene_car_view_1')
i = i.rescale_landmarks_to_diagonal_range(200, group='streetscene_car_view_1')
training_images_color.append(i)
if i.n_channels == 3:
ii = i.as_greyscale(mode='average')
training_images.append(ii)
In [ ]:
from menpo.visualize import visualize_images
visualize_images(training_images_color, colours='r', linewidths=2)
In [ ]:
img = training_images_color[11]
img.view_widget(colours='r', linewidths=2)
In [ ]:
from menpofast.feature import aam_dsift
img = training_images[11]
masked_img = img.as_masked()
masked_img.build_mask_around_landmarks((34, 34), group='streetscene_car_view_1')
dsift_img = aam_dsift(masked_img)
dsift_img.view_widget(colours='r', linewidths=2)
In [3]:
from scipy.signal import cosine
height = 100
width = 100
cosine_mask = np.sum(np.meshgrid(cosine(height), cosine(width)), axis=0)
In [4]:
imshow(cosine_mask)
Out[4]:
In [21]:
from __future__ import division
step = 2
w1 = np.cos(np.linspace(-pi/step, pi/step, height))
w2 = np.cos(np.linspace(-pi/step, pi/step, width))
w = w1[..., None].dot(w2[None, ...])
In [22]:
imshow(w)
Out[22]:
In [20]:
w1
Out[20]:
In [23]:
np.pi
Out[23]:
In [ ]: