In [10]:
import numpy as np
import tensorflow as tf
import random
import time
import docload # convenient methods for loading and processing Project Gutenberg books
In [11]:
# Load and process data
files = ['../data/adventures_of_sherlock_holmes.txt',
'../data/hound_of_the_baskervilles.txt',
'../data/sign_of_the_four.txt']
word_array, dictionary, num_lines, num_words = docload.build_word_array(
files, vocab_size=50000, gutenberg=True)
reverse_dict = {v: k for k, v in dictionary.items()}
print('Document loaded and processed: {} lines, {} words.'
.format(num_lines, num_words))
In [12]:
# Model hyperparameters and training configuration
class Config(object):
"""Model parameters"""
def __init__(self, num_words):
self.vocab_size = num_words
self.batch_size = 32
self.num_rnn_steps = 20 # unrolled length of RNN
self.embed_size = 64 # input embedding
self.rnn_size = 128 # number of RNN units
self.hidden_size = 196 # hidden layer connected to last output of RNN
self.rui_init = 0.01 # maxval, -minval for random_uniform_initializer
self.vsi_init = 0.01 # stddev multiplier (factor) for variance_scaling_initializer
self.neg_samples = 64 # for noise contrastive estimation (candidate sampling loss function)
self.learn_rate = 0.05
self.momentum = 0.8
self.epochs = 1
config = Config(len(dictionary))
In [13]:
# Aliases for especially long TensorFlow calls
rui = tf.random_uniform_initializer
vsi = tf.contrib.layers.variance_scaling_initializer
# Commonly used weight and bias initializers
rui_initializer = rui(-config.rui_init, config.rui_init, dtype=tf.float32)
vsi_initializer = vsi(factor=config.vsi_init, dtype=tf.float32)
zero_initializer = tf.zeros_initializer(dtype=tf.float32)
In [14]:
def model(config, x):
'''Embedding layer, RNN and hidden layer'''
with tf.name_scope('embedding'):
with tf.variable_scope('embedding', initializer=rui_initializer):
embed_w = tf.get_variable('w', [config.vocab_size, config.embed_size])
embed_out = tf.nn.embedding_lookup(embed_w, x, name='output')
with tf.variable_scope('rnn', initializer=vsi_initializer):
rnn_cell = tf.contrib.rnn.GRUCell(config.rnn_size, activation=tf.tanh)
rnn_out, state = tf.nn.dynamic_rnn(rnn_cell, embed_out, dtype=tf.float32)
with tf.name_scope('hidden'):
rnn_last_output = rnn_out[:, config.num_rnn_steps-1, :]
with tf.variable_scope('hidden'):
hid_w = tf.get_variable('w', (config.rnn_size, config.hidden_size),
initializer=vsi_initializer)
hid_b = tf.get_variable('b', config.hidden_size, initializer=zero_initializer)
hid_out = tf.nn.tanh(tf.matmul(rnn_last_output, hid_w) + hid_b)
return hid_out
In [15]:
def loss(config, hid_out, y):
"""Loss Function: noise contrastive estimation on final output of RNN"""
with tf.name_scope('output'):
with tf.variable_scope('output'):
w = tf.get_variable('w', (config.vocab_size, config.hidden_size),
initializer=vsi_initializer)
b = tf.get_variable('b', config.vocab_size, initializer=zero_initializer)
batch_loss = tf.reduce_mean(
tf.nn.nce_loss(w, b, inputs=hid_out, labels=y,
num_sampled=config.neg_samples,
num_classes=config.vocab_size,
num_true=1), name='batch_loss')
return batch_loss
In [16]:
def train(config, batch_loss):
with tf.name_scope('optimize'):
step = tf.Variable(0, trainable=False, name='global_step')
optimizer = tf.train.MomentumOptimizer(config.learn_rate, config.momentum)
train_op = optimizer.minimize(batch_loss, name='minimize_op', global_step=step)
return train_op, step
In [20]:
class MyGraph(object):
def __init__(self, config, word_array):
with tf.device('/cpu'):
batch_width = len(word_array) // config.batch_size
self.data_initializer = tf.placeholder(dtype=tf.int32,
shape=(config.batch_size, batch_width))
self.data = tf.Variable(self.data_initializer, trainable=False, collections=[])
i = tf.train.range_input_producer(batch_width - config.num_rnn_steps - 1,
num_epochs=config.epochs, shuffle=True).dequeue()
self.xq = self.data[:, (i):(i+config.num_rnn_steps)]
self.yq = tf.reshape(self.data[:, i+config.num_rnn_steps], (-1, 1))
self.data_q = tf.FIFOQueue(1000, dtypes = [tf.int32, tf.int32],
shapes=[(config.batch_size, config.num_rnn_steps),
(config.batch_size, 1)])
self.data_q_close = self.data_q.close()
self.enq_data = self.data_q.enqueue([self.xq, self.yq])
def cond(i):
return i < 20
def body(i):
self.x, self.y = self.data_q.dequeue()
self.hid_out = model(config, self.x)
self.batch_loss = loss(config, self.hid_out, self.y)
self.train_op, self.step = train(config, self.batch_loss)
with tf.control_dependencies([self.train_op]):
return i + 1
self.loop = tf.while_loop(cond, body, [tf.constant(0)])
self.init = tf.group(tf.global_variables_initializer(),
tf.local_variables_initializer())
self.saver = tf.train.Saver(max_to_keep=2)
In [22]:
# Train
move_avg_len = 20 # number of batches to average loss over
move_avg_loss = np.zeros(move_avg_len)
with tf.Graph().as_default():
g = MyGraph(config, word_array)
sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
with tf.Session(config=tf.ConfigProto(log_device_placement=True)) as sess:
sess.run(g.init)
batch_width = len(word_array) // config.batch_size
# reshape data for easy slicing into shape = (batch_size, num_rnn_steps)
data = word_array[0 : config.batch_size*batch_width].reshape((config.batch_size, batch_width))
feeddict = {g.data_initializer: data}
sess.run(g.data.initializer, feed_dict=feeddict)
q_runner = tf.train.QueueRunner(g.data_q, [g.enq_data], g.data_q_close)
tf.train.add_queue_runner(q_runner)
writer = tf.summary.FileWriter('../tf_logs/queue/', tf.get_default_graph())
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
start_time = time.time()
counter = 0
try:
while not coord.should_stop():
sess.run(g.loop)
counter += 1
# [_, l, step] = sess.run([g.train_op, g.batch_loss, g.step])
# move_avg_loss[step % move_avg_len] = l
except tf.errors.OutOfRangeError as e:
# Report exceptions to the coordinator.
coord.request_stop(e)
finally:
# Terminate as usual. It is safe to call `coord.request_stop()` twice.
coord.request_stop()
coord.join(threads)
print("--- %s seconds ---" % (time.time() - start_time))
last_saved = g.saver.save(sess, '../tf_logs/queue', global_step=1)
writer.close()
print(np.mean(move_avg_loss))
print(counter)
In [19]:
#116s