In [1]:
import seaborn as sns
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import pathlib
import sys
import scipy.stats
import pathlib
import PaSDqc
%matplotlib inline
In [2]:
sns.set_context('poster')
sns.set_style('ticks')
In [3]:
p_1465 = "../data/Lodato_2015/1465/psd/"
p_4643 = "../data/Lodato_2015/4643/psd/"
freq, nd_1465, sl_1465 = PaSDqc.extra_tools.mk_ndarray(p_1465)
freq, nd_4643, sl_4643 = PaSDqc.extra_tools.mk_ndarray(p_4643)
In [4]:
a1 = np.arange(0, 1000, 100)
a2 = np.arange(1000, 10000, 1000)
a3 = np.arange(10000, 100000, 10000)
a4 = np.arange(100000, 1000000, 100000)
a5 = np.array([1000000])
lags = np.concatenate([a1, a2, a3, a4, a5])
In [5]:
ACF_1465 = np.array([PaSDqc.extra_tools.PSD_to_ACF(freq, psd, lags) for psd in nd_1465])
ACF_4643 = np.array([PaSDqc.extra_tools.PSD_to_ACF(freq, psd, lags) for psd in nd_4643])
var_1465 = ACF_1465[:, 0]
var_4643 = ACF_4643[:, 0]
In [6]:
ACF_1465[:, 0]
Out[6]:
In [7]:
for acf in ACF_1465:
plt.plot(lags[1:], acf[1:])
plt.xscale('log')
In [8]:
sns.kdeplot(var_1465, label='1465')
sns.kdeplot(var_4643, label='4643')
plt.legend()
Out[8]:
In [ ]: