In [1]:
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
%matplotlib inline
In [2]:
mnist = input_data.read_data_sets('data/', one_hot=True)
In [3]:
images = np.random.randint(mnist.train.images.shape[0], size=3)
for idx in images:
img = np.reshape(mnist.train.images[idx, :], (28, 28))
plt.matshow(img, cmap=plt.get_cmap('gray'))
In [6]:
n_hidden_1 = 256
n_hidden_2 = 128
n_input = 28 * 28
n_classes = 10
x = tf.placeholder("float", [None, n_input])
y = tf.placeholder("float", [None, n_classes])
weights = {
'h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])),
'h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),
'out': tf.Variable(tf.random_normal([n_hidden_2, n_classes]))
}
biases = {
'b1': tf.Variable(tf.random_normal([n_hidden_1])),
'b2': tf.Variable(tf.random_normal([n_hidden_2])),
'out': tf.Variable(tf.random_normal([n_classes]))
}
In [7]:
def multilayer_perceptron(x, weights, biases):
layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['h1']), biases['b1']))
layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['h2']), biases['b2']))
return tf.matmul(layer_2, weights['out']) + biases['out']
In [8]:
prediction = multilayer_perceptron(x, weights, biases)
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=prediction, labels=y))
optimizer = tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss)
correct_predictions = tf.equal(tf.argmax(prediction, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_predictions, "float"))
tf.summary.scalar('accuracy', accuracy)
sess = tf.Session()
writer = tf.summary.FileWriter('/tmp/tf/', sess.graph)
merged = tf.summary.merge_all()
init = tf.global_variables_initializer()
In [9]:
epochs = 20
batch_size = 100
batch_count = int(mnist.train.num_examples / batch_size)
sess.run(init)
for epoch in range(epochs):
for _ in range(batch_count):
batch_x, batch_y = mnist.train.next_batch(batch_size)
sess.run(optimizer, feed_dict={x: batch_x, y: batch_y})
summary, epoch_accuracy = sess.run([merged, accuracy], feed_dict={x: mnist.test.images, y: mnist.test.labels})
writer.add_summary(summary, epoch + 1)
print("Epoch: {:02d} / {}, Accuracy: {:.2f}%".format(epoch + 1, epochs, epoch_accuracy * 100))
writer.flush()
writer.close()