$ SSD = USS - S^2 = 0.0433663194999099 $
$ \mu \leftarrow \bar{x}. = \frac{S}{n} = \frac{379.7231}{20} = 18.986155 \sim\sim N(\mu, \frac{\sigma^2}{n}) $
$ StdError = \sqrt{s^2 / n} = \sqrt{0.00228243786841631 / 20} = 0.0106827849094146 $
95% konfidensinterval for $\mu$
$ c_{95}(\mu) = \bar{x.} \mp t_{0.975}(f) StdError = 18.986155 \mp 0.0223593257834748 = [18.9637956742165; 19.0085143257835] $
$ \sigma^2 \leftarrow s^2 = \frac{SSD}{f} = \frac{0.0433663194999099}{19} = 0.00228243786841631 \sim\sim \sigma^2 \chi^2 (n-1) / (n - 1) $
$ \sigma \leftarrow s = \sqrt{s^2} = 0.0477748664929198 $
Konfidensinterval for $\sigma^2$
$ c_{95}(\sigma^2) = [\frac{f s^2}{\chi^2_{0.975}(f)}, \frac{f s^2}{\chi^2_{0.025}(f)}] = [0.0013200379894682, 0.00486905510000587] $