$ f_{(1)} = n_1 - 1 = 40 $
$ f_{(2)} = n_2 - 1 = 40 $
$ SSD_{(1)} = USS_1 - \frac{S_1^2}{n_1} = 12.2364558780488 $
$ SSD_{(2)} = USS_2 - \frac{S_2^2}{n_2} = 16.6835115121951 $
$ \sigma_1^2 \leftarrow s_{(1)}^2 = \frac{SSD_{(1)}}{f_{(1)}} = \frac{12.2364558780488}{40} = 0.30591139695122 $
$ \sigma_2^2 \leftarrow s_{(2)}^2 = \frac{SSD_{(2)}}{f_{(2)}} = \frac{16.6835115121951}{40} = 0.417087787804877 $
$ \mu_1 \leftarrow \bar{x}_1. = \frac{S_1}{n_1} = 3.96568292682927 $
$ \mu_2 \leftarrow \bar{x}_2. = \frac{S_2}{n_2} = 4.26863414634146 $
\begin{align*} \mu_1 - \mu_2 \leftarrow \bar{x_1}. - \bar{x_2}. &= 3.96568292682927 - 4.26863414634146\\ &= -0.302951219512196 \end{align*}
Tester hypotese om ens varians
Vi laver F-test for hypotesen: $ H_{0,\sigma^2}: \sigma_1^2 = \sigma_2^2 = \sigma $
\begin{align*} F &= \frac{\max(s_{(1)}^2, s_{(2)}^2)}{\min(s_{(1)}^2, s_{(2)}^2)} = \frac{0.417087787804877}{0.30591139695122} \\ &= 1.36342676984796 \sim\sim F(40, 40) \end{align*}
Testsandsynligheden beregnes som
$ p_{obs}(x) = 2 (1 - F_{F(40, 40)}(1.36342676984796)) = 0.330913753496132 $
Da $p_{obs}(x)$ er større end $0.05$ kan hypotesen om fælles varians ikke forkastes.
Den fælles varians er da:
$ \sigma^2 \leftarrow s_1^2=\frac{\sum_{i=1}^kSSD_{(i)}}{\sum_{i=1}^kf_{(i)}}=0.361499592378048 \sim\sim \sigma^2\chi^2(80)/80 $
Og har 95%-konfidensintervallet:
$ C_{0.95}(\sigma^2)=\bigg[\frac{f_1s_1^2}{\chi_{1-\alpha/2}^2(f_1)} \ , \ \frac{f_1s_1^2}{\chi_{\alpha/2}^2(f_1)}\bigg]
= [0.27122156852957, 0.506008081986181] $
Tester hypotese om ens middelværdi
Vi laver en $t$-test for at teste hypotesen: $ H_{0\mu}: \mu_1 = \mu_2 = \mu $
$ f_1 = f_{(1)} + f_{(2)} = 80 $
$ t(x) = \frac{ \bar{x}_1. - \bar{x}_2.}{\sqrt{ s_1^2 \frac{1}{n_1} + \frac{1}{n_2}}} = -2.28137001758813 \sim\sim t(80) $
Testsandsynligheden beregnes som
$ p_{obs}(x) = 2 \left(1 - F_{t(f_1)}\left(\lvert t(x)\rvert\right) \right) = 0.0251853120033818 $
Da $p_{obs}$ er mindre end $0.05$ forkastes hypotesen om fælles middelværdi.
Den estimerede spredning på $ \bar{x_1}. - \bar{x_2}. $ er
$ StdError(\bar{x_1}. - \bar{x_2}.) = \sqrt{s_{(1)}^2 / n_1 + s_{(2)}^2 / n_2} = 0.132793548252412 $
\begin{align*} c_{95}(\mu_1 - \mu_2)
&= \bar{x_1}. - \bar{x_2}. \pm t_{0.975}(\bar{f}) StdError(\bar{x_1}. - \bar{x_2}.) \\
&= 3.96568292682927 - 4.26863414634146 \pm 1.99006342125445 \cdot 0.132793548252412 \\
&= -0.302951219512196 \pm 0.264267582955713 \\
&= [-0.567218802467909, -0.0386836365564826]
\end{align*}