In [1]:
import MySQLdb as mdb
import pandas as pd
import plotly
con = mdb.connect('127.0.0.1', 'root', 'paytm@197', 'stocks');
with con:
cur = con.cursor()
cur.execute("select * from stock_data where symbol = 'pnb'")
rows = cur.fetchall()
df = pd.DataFrame( [[ij for ij in i] for i in rows] )
print(df.head(20))
0 1 2 3 4 5 6 7 8 \
0 4018073 PNB EQ 2002-04-28 37.40 38.50 39.10 37.65 39.10
1 4018075 PNB EQ 2002-04-25 31.00 40.00 40.00 35.00 37.30
2 4018076 PNB EQ 2002-04-29 38.60 39.00 40.35 38.50 40.15
3 4018077 PNB EQ 2002-05-05 46.45 47.00 48.25 45.95 46.80
4 4018078 PNB EQ 2002-05-01 40.10 40.25 46.10 40.25 45.10
5 4018079 PNB EQ 2002-05-02 44.80 45.80 47.45 44.55 46.95
6 4018080 PNB EQ 2002-05-08 43.40 44.70 44.70 42.85 43.80
7 4018081 PNB EQ 2002-05-06 46.70 46.85 46.85 44.65 45.00
8 4018083 PNB EQ 2002-05-09 43.70 48.00 48.00 42.90 43.60
9 4018084 PNB EQ 2007-01-01 507.00 512.00 512.80 503.50 511.80
10 4018085 PNB EQ 2002-05-07 45.30 45.50 45.70 42.60 44.25
11 4018087 PNB EQ 2007-01-02 511.60 508.30 521.00 508.30 516.95
12 4018088 PNB EQ 2007-01-03 515.60 519.80 523.45 508.00 509.00
13 4018089 PNB EQ 2007-01-04 510.85 509.90 514.80 504.25 512.40
14 4018090 PNB EQ 2007-01-07 511.55 511.55 514.40 502.10 511.25
15 4018091 PNB EQ 2007-01-08 510.80 510.00 513.90 493.35 496.00
16 4018092 PNB EQ 2007-01-09 496.15 510.00 510.00 484.05 485.00
17 4018093 PNB EQ 2007-01-10 488.25 485.00 496.00 480.00 490.00
18 4018094 PNB EQ 2007-01-11 485.70 494.85 518.95 492.00 516.00
19 4018095 PNB EQ 2007-01-14 516.00 525.00 533.00 514.50 518.30
9 10 11 12 13 14 15 16 \
0 38.60 38.26 2602886 996.0 0 1632801 63 2016-07-25 18:56:13
1 37.40 37.03 4000760 1482.0 0 2048637 51 2016-07-25 18:56:13
2 40.10 39.79 1377334 548.0 0 0 0 2016-07-25 18:56:13
3 46.70 46.96 1609113 756.0 0 1041920 65 2016-07-25 18:56:13
4 44.80 44.15 3348126 1478.0 0 1307465 39 2016-07-25 18:56:13
5 46.45 46.10 2689672 1240.0 0 1032559 38 2016-07-25 18:56:13
6 43.70 43.62 507464 221.0 0 317226 63 2016-07-25 18:56:13
7 45.30 45.69 964485 441.0 0 649068 67 2016-07-25 18:56:13
8 43.35 43.32 315013 136.0 0 214039 68 2016-07-25 18:56:13
9 511.60 508.99 181484 924.0 0 29067 16 2016-07-25 18:56:13
10 43.40 43.90 642380 282.0 0 399537 62 2016-07-25 18:56:13
11 515.60 516.73 320559 1656.0 0 122611 38 2016-07-25 18:56:13
12 510.85 517.80 410828 2127.0 0 108085 26 2016-07-25 18:56:13
13 511.55 510.98 244874 1251.0 0 64280 26 2016-07-25 18:56:13
14 510.80 508.64 487833 2481.0 0 221328 45 2016-07-25 18:56:13
15 496.15 503.16 648162 3261.0 0 292064 45 2016-07-25 18:56:13
16 488.25 488.59 556877 2721.0 0 280064 50 2016-07-25 18:56:13
17 485.70 484.29 827043 4005.0 0 421730 51 2016-07-25 18:56:13
18 516.00 511.94 761443 3898.0 0 307028 40 2016-07-25 18:56:13
19 519.25 519.48 337196 1752.0 0 89907 27 2016-07-25 18:56:13
17
0 2016-07-25 18:56:13
1 2016-07-25 18:56:13
2 2016-07-25 18:56:13
3 2016-07-25 18:56:13
4 2016-07-25 18:56:13
5 2016-07-25 18:56:13
6 2016-07-25 18:56:13
7 2016-07-25 18:56:13
8 2016-07-25 18:56:13
9 2016-07-25 18:56:13
10 2016-07-25 18:56:13
11 2016-07-25 18:56:13
12 2016-07-25 18:56:13
13 2016-07-25 18:56:13
14 2016-07-25 18:56:13
15 2016-07-25 18:56:13
16 2016-07-25 18:56:13
17 2016-07-25 18:56:13
18 2016-07-25 18:56:13
19 2016-07-25 18:56:13
In [ ]:
Content source: palashkulsh/nseproxy
Similar notebooks: