In [37]:
%matplotlib inline
from matplotlib import pyplot as plt
import numpy as np
In [38]:
from IPython.html.widgets import interact
Write a function char_probs
that takes a string and computes the probabilities of each character in the string:
In [39]:
def char_probs(s):
"""Find the probabilities of the unique characters in the string s.
Parameters
----------
s : str
A string of characters.
Returns
-------
probs : dict
A dictionary whose keys are the unique characters in s and whose values
are the probabilities of those characters.
"""
diction=dict((x,s.count(x)/len(s)) for x in s)
return(diction)
In [42]:
a=char_probs("abcd")
In [43]:
test1 = char_probs('aaaa')
assert np.allclose(test1['a'], 1.0)
test2 = char_probs('aabb')
assert np.allclose(test2['a'], 0.5)
assert np.allclose(test2['b'], 0.5)
test3 = char_probs('abcd')
assert np.allclose(test3['a'], 0.25)
assert np.allclose(test3['b'], 0.25)
assert np.allclose(test3['c'], 0.25)
assert np.allclose(test3['d'], 0.25)
The entropy is a quantiative measure of the disorder of a probability distribution. It is used extensively in Physics, Statistics, Machine Learning, Computer Science and Information Science. Given a set of probabilities $P_i$, the entropy is defined as:
$$H = - \Sigma_i P_i \log_2(P_i)$$In this expression $\log_2$ is the base 2 log (np.log2
), which is commonly used in information science. In Physics the natural log is often used in the definition of entropy.
Write a funtion entropy
that computes the entropy of a probability distribution. The probability distribution will be passed as a Python dict
: the values in the dict
will be the probabilities.
To compute the entropy, you should:
dict
to a Numpy array of probabilities.np.log2
, etc.) to compute the entropy.for
or while
loops in your code.
In [94]:
def entropy(d):
"""Compute the entropy of a dict d whose values are probabilities."""
a=np.array(d)
h=0-(np.sum(d*np.log2(d)))
return h
In [95]:
entropy([1])
Out[95]:
In [89]:
assert np.allclose(entropy({'a': 0.5, 'b': 0.5}), 1.0)
assert np.allclose(entropy({'a': 1.0}), 0.0)
Use IPython's interact
function to create a user interface that allows you to type a string into a text box and see the entropy of the character probabilities of the string.
In [96]:
def interface(d):
a=char_probs(d)
return entropy(a)
interact(interface,d='Type Here')
Out[96]:
In [ ]:
assert True # use this for grading the pi digits histogram