In [1]:
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
from util.util import MyDict, load_params, load_weights_of, compose_imgs, convert_to_rgb, mkdir, get_log_dir
In [ ]:
params = MyDict({
'results_dir': 'results', # Directory where to save the results
'log_dir': 'log', # Directory where the experiment was logged
'base_dir': 'data/unet_segmentations_binary', # Directory that contains the data
'train_dir': 'train', # Directory inside base_dir that contains training data
'val_dir': 'val', # Directory inside base_dir that contains validation data
'test_dir': 'test', # Directory inside base_dir that contains test data
'load_to_memory': True, # Whether to load the images into memory
'expt_name': None, # The name of the experiment to test
'target_size': 512, # The size of the images loaded by the iterator
'N': 100, # The number of samples to generate
})
params = load_params(params)
params = MyDict(params)
In [ ]:
unet = m.g_unet(params.a_ch, params.b_ch, params.nfatob, is_binary=params.is_b_binary)
load_weights_of(unet, u.ATOB_WEIGHTS_FILE, log_dir=params.log_dir, expt_name=params.expt_name)
In [ ]:
In [ ]: