---------------------------------------------------------------------------
KeyboardInterrupt Traceback (most recent call last)
<ipython-input-4-a1f21dea752f> in <module>()
----> 1 agent.learn(ipy_clear=True, max_episodes=100000, max_pathlength=200)
2
/home/oshea/src/kerlym/kerlym/dqn.pyc in learn(self, ipy_clear, max_episodes, max_pathlength)
228
229 do_update = (i%self.timesteps_per_batch==self.timesteps_per_batch-1)
--> 230 self.update_train( obs, action, reward, new_obs, done, do_update )
231
232 obs[:,:] = new_obs[:,:]
/home/oshea/src/kerlym/kerlym/dqn.pyc in update_train(self, p_state, action, p_reward, new_state, terminal, update_model)
94 self.model_updates += 1
95
---> 96 X_train, y_train = self.process_minibatch(terminal)
97 hist = self.get_model(greedy=False).fit(X_train,
98 y_train,
/home/oshea/src/kerlym/kerlym/dqn.pyc in process_minibatch(self, terminal_rewards)
138 old_qval =self.get_model(greedy=True).predict(old_state_m,
139 batch_size=1,
--> 140 verbose=0)
141
142 input2 = new_state_m
/home/oshea/src/keras/keras/engine/training.pyc in predict(self, x, batch_size, verbose)
1101 f = self.predict_function
1102 return self._predict_loop(f, ins,
-> 1103 batch_size=batch_size, verbose=verbose)
1104
1105 def train_on_batch(self, x, y,
/home/oshea/src/keras/keras/engine/training.pyc in _predict_loop(self, f, ins, batch_size, verbose)
821 ins_batch = slice_X(ins, batch_ids)
822
--> 823 batch_outs = f(ins_batch)
824 if type(batch_outs) != list:
825 batch_outs = [batch_outs]
/home/oshea/src/keras/keras/backend/theano_backend.pyc in __call__(self, inputs)
491 def __call__(self, inputs):
492 assert type(inputs) in {list, tuple}
--> 493 return self.function(*inputs)
494
495
/usr/local/lib/python2.7/dist-packages/theano/compile/function_module.pyc in __call__(self, *args, **kwargs)
893 try:
894 outputs =\
--> 895 self.fn() if output_subset is None else\
896 self.fn(output_subset=output_subset)
897 except Exception:
KeyboardInterrupt: