Deep Convolutional GANs

In this notebook, you'll build a GAN using convolutional layers in the generator and discriminator. This is called a Deep Convolutional GAN, or DCGAN for short. The DCGAN architecture was first explored last year and has seen impressive results in generating new images, you can read the original paper here.

You'll be training DCGAN on the Street View House Numbers (SVHN) dataset. These are color images of house numbers collected from Google street view. SVHN images are in color and much more variable than MNIST.

So, we'll need a deeper and more powerful network. This is accomplished through using convolutional layers in the discriminator and generator. It's also necessary to use batch normalization to get the convolutional networks to train. The only real changes compared to what you saw previously are in the generator and discriminator, otherwise the rest of the implementation is the same.


In [1]:
%matplotlib inline

import pickle as pkl

import matplotlib.pyplot as plt
import numpy as np
from scipy.io import loadmat
import tensorflow as tf

In [2]:
!mkdir data


子目录或文件 data 已经存在。

Getting the data

Here you can download the SVHN dataset. Run the cell above and it'll download to your machine.


In [3]:
from urllib.request import urlretrieve
from os.path import isfile, isdir
from tqdm import tqdm

data_dir = 'data/'

if not isdir(data_dir):
    raise Exception("Data directory doesn't exist!")

class DLProgress(tqdm):
    last_block = 0

    def hook(self, block_num=1, block_size=1, total_size=None):
        self.total = total_size
        self.update((block_num - self.last_block) * block_size)
        self.last_block = block_num

if not isfile(data_dir + "train_32x32.mat"):
    with DLProgress(unit='B', unit_scale=True, miniters=1, desc='SVHN Training Set') as pbar:
        urlretrieve(
            'http://ufldl.stanford.edu/housenumbers/train_32x32.mat',
            data_dir + 'train_32x32.mat',
            pbar.hook)

if not isfile(data_dir + "test_32x32.mat"):
    with DLProgress(unit='B', unit_scale=True, miniters=1, desc='SVHN Testing Set') as pbar:
        urlretrieve(
            'http://ufldl.stanford.edu/housenumbers/test_32x32.mat',
            data_dir + 'test_32x32.mat',
            pbar.hook)

These SVHN files are .mat files typically used with Matlab. However, we can load them in with scipy.io.loadmat which we imported above.


In [4]:
trainset = loadmat(data_dir + 'train_32x32.mat')
testset = loadmat(data_dir + 'test_32x32.mat')

Here I'm showing a small sample of the images. Each of these is 32x32 with 3 color channels (RGB). These are the real images we'll pass to the discriminator and what the generator will eventually fake.


In [5]:
idx = np.random.randint(0, trainset['X'].shape[3], size=36)
fig, axes = plt.subplots(6, 6, sharex=True, sharey=True, figsize=(5,5),)
for ii, ax in zip(idx, axes.flatten()):
    ax.imshow(trainset['X'][:,:,:,ii], aspect='equal')
    ax.xaxis.set_visible(False)
    ax.yaxis.set_visible(False)
plt.subplots_adjust(wspace=0, hspace=0)


Here we need to do a bit of preprocessing and getting the images into a form where we can pass batches to the network. First off, we need to rescale the images to a range of -1 to 1, since the output of our generator is also in that range. We also have a set of test and validation images which could be used if we're trying to identify the numbers in the images.


In [6]:
def scale(x, feature_range=(-1, 1)):
    # scale to (0, 1)
    x = ((x - x.min())/(255 - x.min()))
    
    # scale to feature_range
    min, max = feature_range
    x = x * (max - min) + min
    return x

In [7]:
class Dataset:
    def __init__(self, train, test, val_frac=0.5, shuffle=False, scale_func=None):
        split_idx = int(len(test['y'])*(1 - val_frac))
        self.test_x, self.valid_x = test['X'][:,:,:,:split_idx], test['X'][:,:,:,split_idx:]
        self.test_y, self.valid_y = test['y'][:split_idx], test['y'][split_idx:]
        self.train_x, self.train_y = train['X'], train['y']
        
        self.train_x = np.rollaxis(self.train_x, 3)
        self.valid_x = np.rollaxis(self.valid_x, 3)
        self.test_x = np.rollaxis(self.test_x, 3)
        
        if scale_func is None:
            self.scaler = scale
        else:
            self.scaler = scale_func
        self.shuffle = shuffle
        
    def batches(self, batch_size):
        if self.shuffle:
            idx = np.arange(len(dataset.train_x))
            np.random.shuffle(idx)
            self.train_x = self.train_x[idx]
            self.train_y = self.train_y[idx]
        
        n_batches = len(self.train_y)//batch_size
        for ii in range(0, len(self.train_y), batch_size):
            x = self.train_x[ii:ii+batch_size]
            y = self.train_y[ii:ii+batch_size]
            
            yield self.scaler(x), y

Network Inputs

Here, just creating some placeholders like normal.


In [8]:
def model_inputs(real_dim, z_dim):
    inputs_real = tf.placeholder(tf.float32, (None, *real_dim), name='input_real')
    inputs_z = tf.placeholder(tf.float32, (None, z_dim), name='input_z')
    
    return inputs_real, inputs_z

Generator

Here you'll build the generator network. The input will be our noise vector z as before. Also as before, the output will be a $tanh$ output, but this time with size 32x32 which is the size of our SVHN images.

What's new here is we'll use convolutional layers to create our new images. The first layer is a fully connected layer which is reshaped into a deep and narrow layer, something like 4x4x1024 as in the original DCGAN paper. Then we use batch normalization and a leaky ReLU activation. Next is a transposed convolution where typically you'd halve the depth and double the width and height of the previous layer. Again, we use batch normalization and leaky ReLU. For each of these layers, the general scheme is convolution > batch norm > leaky ReLU.

You keep stacking layers up like this until you get the final transposed convolution layer with shape 32x32x3. Below is the archicture used in the original DCGAN paper:

Note that the final layer here is 64x64x3, while for our SVHN dataset, we only want it to be 32x32x3.


In [9]:
def generator(z, output_dim, reuse=False, alpha=0.2, training=True):
    with tf.variable_scope('generator', reuse=reuse):
        # First fully connected layer
        x1 = tf.layers.dense(z, 4*4*512)
        # Reshape it to start the convolutional stack
        x1 = tf.reshape(x1, (-1, 4, 4, 512))
        x1 = tf.layers.batch_normalization(x1, training=training)
        x1 = tf.maximum(alpha * x1, x1)
        # 4x4x512 now
        
        x2 = tf.layers.conv2d_transpose(x1, 256, 5, strides=2, padding='same')
        x2 = tf.layers.batch_normalization(x2, training=training)
        x2 = tf.maximum(alpha * x2, x2)
        # 8x8x256 now
        
        x3 = tf.layers.conv2d_transpose(x2, 128, 5, strides=2, padding='same')
        x3 = tf.layers.batch_normalization(x3, training=training)
        x3 = tf.maximum(alpha * x3, x3)
        # 16x16x128 now
        
        # Output layer
        logits = tf.layers.conv2d_transpose(x3, output_dim, 5, strides=2, padding='same')
        # 32x32x3 now
        
        out = tf.tanh(logits)
        
        return out

Discriminator

Here you'll build the discriminator. This is basically just a convolutional classifier like you've build before. The input to the discriminator are 32x32x3 tensors/images. You'll want a few convolutional layers, then a fully connected layer for the output. As before, we want a sigmoid output, and you'll need to return the logits as well. For the depths of the convolutional layers I suggest starting with 16, 32, 64 filters in the first layer, then double the depth as you add layers. Note that in the DCGAN paper, they did all the downsampling using only strided convolutional layers with no maxpool layers.

You'll also want to use batch normalization with tf.layers.batch_normalization on each layer except the first convolutional and output layers. Again, each layer should look something like convolution > batch norm > leaky ReLU.

Note: in this project, your batch normalization layers will always use batch statistics. (That is, always set training to True.) That's because we are only interested in using the discriminator to help train the generator. However, if you wanted to use the discriminator for inference later, then you would need to set the training parameter appropriately.


In [10]:
def discriminator(x, reuse=False, alpha=0.2):
    with tf.variable_scope('discriminator', reuse=reuse):
        # Input layer is 32x32x3
        x1 = tf.layers.conv2d(x, 64, 5, strides=2, padding='same')
        relu1 = tf.maximum(alpha * x1, x1)
        # 16x16x64
        
        x2 = tf.layers.conv2d(relu1, 128, 5, strides=2, padding='same')
        bn2 = tf.layers.batch_normalization(x2, training=True)
        relu2 = tf.maximum(alpha * bn2, bn2)
        # 8x8x128
        
        x3 = tf.layers.conv2d(relu2, 256, 5, strides=2, padding='same')
        bn3 = tf.layers.batch_normalization(x3, training=True)
        relu3 = tf.maximum(alpha * bn3, bn3)
        # 4x4x256

        # Flatten it
        flat = tf.reshape(relu3, (-1, 4*4*256))
        logits = tf.layers.dense(flat, 1)
        out = tf.sigmoid(logits)
        
        return out, logits

Model Loss

Calculating the loss like before, nothing new here.


In [11]:
def model_loss(input_real, input_z, output_dim, alpha=0.2):
    """
    Get the loss for the discriminator and generator
    :param input_real: Images from the real dataset
    :param input_z: Z input
    :param out_channel_dim: The number of channels in the output image
    :return: A tuple of (discriminator loss, generator loss)
    """
    g_model = generator(input_z, output_dim, alpha=alpha)
    d_model_real, d_logits_real = discriminator(input_real, alpha=alpha)
    d_model_fake, d_logits_fake = discriminator(g_model, reuse=True, alpha=alpha)

    d_loss_real = tf.reduce_mean(
        tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_real, labels=tf.ones_like(d_model_real)))
    d_loss_fake = tf.reduce_mean(
        tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake, labels=tf.zeros_like(d_model_fake)))
    g_loss = tf.reduce_mean(
        tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake, labels=tf.ones_like(d_model_fake)))

    d_loss = d_loss_real + d_loss_fake

    return d_loss, g_loss

Optimizers

Not much new here, but notice how the train operations are wrapped in a with tf.control_dependencies block so the batch normalization layers can update their population statistics.


In [12]:
def model_opt(d_loss, g_loss, learning_rate, beta1):
    """
    Get optimization operations
    :param d_loss: Discriminator loss Tensor
    :param g_loss: Generator loss Tensor
    :param learning_rate: Learning Rate Placeholder
    :param beta1: The exponential decay rate for the 1st moment in the optimizer
    :return: A tuple of (discriminator training operation, generator training operation)
    """
    # Get weights and bias to update
    t_vars = tf.trainable_variables()
    d_vars = [var for var in t_vars if var.name.startswith('discriminator')]
    g_vars = [var for var in t_vars if var.name.startswith('generator')]

    # Optimize
    with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)):
        d_train_opt = tf.train.AdamOptimizer(learning_rate, beta1=beta1).minimize(d_loss, var_list=d_vars)
        g_train_opt = tf.train.AdamOptimizer(learning_rate, beta1=beta1).minimize(g_loss, var_list=g_vars)

    return d_train_opt, g_train_opt

Building the model

Here we can use the functions we defined about to build the model as a class. This will make it easier to move the network around in our code since the nodes and operations in the graph are packaged in one object.


In [13]:
class GAN:
    def __init__(self, real_size, z_size, learning_rate, alpha=0.2, beta1=0.5):
        tf.reset_default_graph()
        
        self.input_real, self.input_z = model_inputs(real_size, z_size)
        
        self.d_loss, self.g_loss = model_loss(self.input_real, self.input_z,
                                              real_size[2], alpha=alpha)
        
        self.d_opt, self.g_opt = model_opt(self.d_loss, self.g_loss, learning_rate, beta1)

Here is a function for displaying generated images.


In [14]:
def view_samples(epoch, samples, nrows, ncols, figsize=(5,5)):
    fig, axes = plt.subplots(figsize=figsize, nrows=nrows, ncols=ncols, 
                             sharey=True, sharex=True)
    for ax, img in zip(axes.flatten(), samples[epoch]):
        ax.axis('off')
        img = ((img - img.min())*255 / (img.max() - img.min())).astype(np.uint8)
        ax.set_adjustable('box-forced')
        im = ax.imshow(img, aspect='equal')
   
    plt.subplots_adjust(wspace=0, hspace=0)
    return fig, axes

And another function we can use to train our network. Notice when we call generator to create the samples to display, we set training to False. That's so the batch normalization layers will use the population statistics rather than the batch statistics. Also notice that we set the net.input_real placeholder when we run the generator's optimizer. The generator doesn't actually use it, but we'd get an error without it because of the tf.control_dependencies block we created in model_opt.


In [15]:
def train(net, dataset, epochs, batch_size, print_every=10, show_every=100, figsize=(5,5)):
    saver = tf.train.Saver()
    sample_z = np.random.uniform(-1, 1, size=(72, z_size))

    samples, losses = [], []
    steps = 0

    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        for e in range(epochs):
            for x, y in dataset.batches(batch_size):
                steps += 1

                # Sample random noise for G
                batch_z = np.random.uniform(-1, 1, size=(batch_size, z_size))

                # Run optimizers
                _ = sess.run(net.d_opt, feed_dict={net.input_real: x, net.input_z: batch_z})
                _ = sess.run(net.g_opt, feed_dict={net.input_z: batch_z, net.input_real: x})

                if steps % print_every == 0:
                    # At the end of each epoch, get the losses and print them out
                    train_loss_d = net.d_loss.eval({net.input_z: batch_z, net.input_real: x})
                    train_loss_g = net.g_loss.eval({net.input_z: batch_z})

                    print("Epoch {}/{}...".format(e+1, epochs),
                          "Discriminator Loss: {:.4f}...".format(train_loss_d),
                          "Generator Loss: {:.4f}".format(train_loss_g))
                    # Save losses to view after training
                    losses.append((train_loss_d, train_loss_g))

                if steps % show_every == 0:
                    gen_samples = sess.run(
                                   generator(net.input_z, 3, reuse=True, training=False),
                                   feed_dict={net.input_z: sample_z})
                    samples.append(gen_samples)
                    _ = view_samples(-1, samples, 6, 12, figsize=figsize)
                    plt.show()

        saver.save(sess, './checkpoints/generator.ckpt')

    with open('samples.pkl', 'wb') as f:
        pkl.dump(samples, f)
    
    return losses, samples

Hyperparameters

GANs are very sensitive to hyperparameters. A lot of experimentation goes into finding the best hyperparameters such that the generator and discriminator don't overpower each other. Try out your own hyperparameters or read the DCGAN paper to see what worked for them.


In [16]:
real_size = (32,32,3)
z_size = 100
learning_rate = 0.0002
batch_size = 128
epochs = 25
alpha = 0.2
beta1 = 0.5

# Create the network
net = GAN(real_size, z_size, learning_rate, alpha=alpha, beta1=beta1)

In [17]:
dataset = Dataset(trainset, testset)

losses, samples = train(net, dataset, epochs, batch_size, figsize=(10,5))


Epoch 1/25... Discriminator Loss: 1.0646... Generator Loss: 0.9121
Epoch 1/25... Discriminator Loss: 0.2838... Generator Loss: 2.6901
Epoch 1/25... Discriminator Loss: 0.1527... Generator Loss: 2.6134
Epoch 1/25... Discriminator Loss: 0.1357... Generator Loss: 2.8614
Epoch 1/25... Discriminator Loss: 0.1480... Generator Loss: 2.8235
Epoch 1/25... Discriminator Loss: 0.1923... Generator Loss: 2.4525
Epoch 1/25... Discriminator Loss: 0.1940... Generator Loss: 2.2333
Epoch 1/25... Discriminator Loss: 0.4509... Generator Loss: 9.8737
Epoch 1/25... Discriminator Loss: 0.4954... Generator Loss: 2.5738
Epoch 1/25... Discriminator Loss: 0.6459... Generator Loss: 1.5356
Epoch 1/25... Discriminator Loss: 0.5864... Generator Loss: 1.0774
Epoch 1/25... Discriminator Loss: 0.3997... Generator Loss: 2.1443
Epoch 1/25... Discriminator Loss: 0.5603... Generator Loss: 1.3579
Epoch 1/25... Discriminator Loss: 0.1966... Generator Loss: 2.7770
Epoch 1/25... Discriminator Loss: 1.0321... Generator Loss: 1.9760
Epoch 1/25... Discriminator Loss: 0.5937... Generator Loss: 1.2629
Epoch 1/25... Discriminator Loss: 1.5213... Generator Loss: 0.5554
Epoch 1/25... Discriminator Loss: 0.4205... Generator Loss: 2.7063
Epoch 1/25... Discriminator Loss: 0.9265... Generator Loss: 0.8105
Epoch 1/25... Discriminator Loss: 0.3063... Generator Loss: 2.4787
Epoch 1/25... Discriminator Loss: 0.1633... Generator Loss: 2.8075
Epoch 1/25... Discriminator Loss: 0.3991... Generator Loss: 1.7140
Epoch 1/25... Discriminator Loss: 0.9219... Generator Loss: 0.8968
Epoch 1/25... Discriminator Loss: 1.8931... Generator Loss: 0.2998
Epoch 1/25... Discriminator Loss: 0.5520... Generator Loss: 3.0318
Epoch 1/25... Discriminator Loss: 2.4131... Generator Loss: 0.1762
Epoch 1/25... Discriminator Loss: 1.2054... Generator Loss: 1.2994
Epoch 1/25... Discriminator Loss: 1.3472... Generator Loss: 0.9245
Epoch 1/25... Discriminator Loss: 0.5309... Generator Loss: 1.5099
Epoch 1/25... Discriminator Loss: 0.6725... Generator Loss: 2.0716
Epoch 1/25... Discriminator Loss: 0.6678... Generator Loss: 1.1411
Epoch 1/25... Discriminator Loss: 0.5724... Generator Loss: 1.5155
Epoch 1/25... Discriminator Loss: 0.6826... Generator Loss: 1.4088
Epoch 1/25... Discriminator Loss: 0.6983... Generator Loss: 1.2707
Epoch 1/25... Discriminator Loss: 0.6021... Generator Loss: 1.7611
Epoch 1/25... Discriminator Loss: 0.9032... Generator Loss: 1.0270
Epoch 1/25... Discriminator Loss: 0.8280... Generator Loss: 1.0888
Epoch 1/25... Discriminator Loss: 1.0524... Generator Loss: 1.5668
Epoch 1/25... Discriminator Loss: 0.5195... Generator Loss: 2.2189
Epoch 1/25... Discriminator Loss: 0.5801... Generator Loss: 1.7517
Epoch 1/25... Discriminator Loss: 0.9375... Generator Loss: 1.2295
Epoch 1/25... Discriminator Loss: 0.8558... Generator Loss: 1.0334
Epoch 1/25... Discriminator Loss: 0.7578... Generator Loss: 1.2347
Epoch 1/25... Discriminator Loss: 1.0236... Generator Loss: 0.7678
Epoch 1/25... Discriminator Loss: 0.9491... Generator Loss: 0.9341
Epoch 1/25... Discriminator Loss: 0.6255... Generator Loss: 1.7843
Epoch 1/25... Discriminator Loss: 0.8931... Generator Loss: 1.0765
Epoch 1/25... Discriminator Loss: 0.9692... Generator Loss: 1.0105
Epoch 1/25... Discriminator Loss: 0.6139... Generator Loss: 1.3644
Epoch 1/25... Discriminator Loss: 0.9553... Generator Loss: 1.0141
Epoch 1/25... Discriminator Loss: 0.9348... Generator Loss: 0.8811
Epoch 1/25... Discriminator Loss: 0.7938... Generator Loss: 1.3174
Epoch 1/25... Discriminator Loss: 0.6177... Generator Loss: 2.3503
Epoch 1/25... Discriminator Loss: 1.7178... Generator Loss: 0.3763
Epoch 1/25... Discriminator Loss: 0.7002... Generator Loss: 1.5502
Epoch 1/25... Discriminator Loss: 0.6748... Generator Loss: 1.1412
Epoch 1/25... Discriminator Loss: 1.0271... Generator Loss: 0.8317
Epoch 2/25... Discriminator Loss: 0.9098... Generator Loss: 1.5053
Epoch 2/25... Discriminator Loss: 0.5954... Generator Loss: 1.9118
---------------------------------------------------------------------------
KeyboardInterrupt                         Traceback (most recent call last)
<ipython-input-17-fac3c418c81e> in <module>()
      1 dataset = Dataset(trainset, testset)
      2 
----> 3 losses, samples = train(net, dataset, epochs, batch_size, figsize=(10,5))

<ipython-input-15-e173767cd948> in train(net, dataset, epochs, batch_size, print_every, show_every, figsize)
     17                 # Run optimizers
     18                 _ = sess.run(net.d_opt, feed_dict={net.input_real: x, net.input_z: batch_z})
---> 19                 _ = sess.run(net.g_opt, feed_dict={net.input_z: batch_z, net.input_real: x})
     20 
     21                 if steps % print_every == 0:

c:\users\administrator\anaconda3\envs\intro-to-rnns\lib\site-packages\tensorflow\python\client\session.py in run(self, fetches, feed_dict, options, run_metadata)
    776     try:
    777       result = self._run(None, fetches, feed_dict, options_ptr,
--> 778                          run_metadata_ptr)
    779       if run_metadata:
    780         proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)

c:\users\administrator\anaconda3\envs\intro-to-rnns\lib\site-packages\tensorflow\python\client\session.py in _run(self, handle, fetches, feed_dict, options, run_metadata)
    980     if final_fetches or final_targets:
    981       results = self._do_run(handle, final_targets, final_fetches,
--> 982                              feed_dict_string, options, run_metadata)
    983     else:
    984       results = []

c:\users\administrator\anaconda3\envs\intro-to-rnns\lib\site-packages\tensorflow\python\client\session.py in _do_run(self, handle, target_list, fetch_list, feed_dict, options, run_metadata)
   1030     if handle is None:
   1031       return self._do_call(_run_fn, self._session, feed_dict, fetch_list,
-> 1032                            target_list, options, run_metadata)
   1033     else:
   1034       return self._do_call(_prun_fn, self._session, handle, feed_dict,

c:\users\administrator\anaconda3\envs\intro-to-rnns\lib\site-packages\tensorflow\python\client\session.py in _do_call(self, fn, *args)
   1037   def _do_call(self, fn, *args):
   1038     try:
-> 1039       return fn(*args)
   1040     except errors.OpError as e:
   1041       message = compat.as_text(e.message)

c:\users\administrator\anaconda3\envs\intro-to-rnns\lib\site-packages\tensorflow\python\client\session.py in _run_fn(session, feed_dict, fetch_list, target_list, options, run_metadata)
   1019         return tf_session.TF_Run(session, options,
   1020                                  feed_dict, fetch_list, target_list,
-> 1021                                  status, run_metadata)
   1022 
   1023     def _prun_fn(session, handle, feed_dict, fetch_list):

KeyboardInterrupt: 

In [18]:
fig, ax = plt.subplots()
losses = np.array(losses)
plt.plot(losses.T[0], label='Discriminator', alpha=0.5)
plt.plot(losses.T[1], label='Generator', alpha=0.5)
plt.title("Training Losses")
plt.legend()


Out[18]:
<matplotlib.legend.Legend at 0x7f2c43f318d0>

In [18]:
fig, ax = plt.subplots()
losses = np.array(losses)
plt.plot(losses.T[0], label='Discriminator', alpha=0.5)
plt.plot(losses.T[1], label='Generator', alpha=0.5)
plt.title("Training Losses")
plt.legend()


Out[18]:
<matplotlib.legend.Legend at 0x7f785c9e7a58>

In [19]:
_ = view_samples(-1, samples, 6, 12, figsize=(10,5))



In [19]:
_ = view_samples(-1, samples, 6, 12, figsize=(10,5))