Ladder memory equations


In [1]:
from fast import *
from fast.config import fast_path
from matplotlib import pyplot
from sympy import sin,cos,exp,sqrt,pi,zeros,I, Integral, oo
from numpy import array
%matplotlib inline
init_printing()
print_ascii=True; print_ascii=False

In [2]:
path="/home/oscar/oxford/inhomogeneous_broadening/complete_model/" 
name='orca'

We will be deriving the optical Bloch equations for a three level system in a ladder configuration as that in the figure.


In [3]:
fig=pyplot.figure(); ax=fig.add_subplot(111,aspect="equal")

p1=[0.5,1]; p2=[1.5,3]; p3=[2.5,5]
draw_state(ax,p1,text=r"$|1\rangle$",l=1.0,alignment='right',label_displacement=0.05,fontsize=25,linewidth=4.0)
draw_state(ax,p2,text=r"$|2\rangle$",l=1.0,alignment='right',label_displacement=0.05,fontsize=25,linewidth=4.0)
draw_state(ax,p3,text=r"$|3\rangle$",l=1.0,alignment='right',label_displacement=0.05,fontsize=25,linewidth=4.0)

excitation(ax,[p1[0]+0.25,p1[1]],[p2[0]+0.25,p2[1]], fc="r", ec="r",width=0.01, head_width=0.2, head_length=0.2)
excitation(ax,[p2[0]+0.25,p2[1]],[p3[0]+0.25,p3[1]], fc="b", ec="b",width=0.01, head_width=0.2, head_length=0.2)

decay(     ax,[p1[0]-0.25,p1[1]],[p2[0]-0.25,p2[1]], 0.05,10.0,color="r",linewidth=1.0)
decay(     ax,[p2[0]-0.25,p2[1]],[p3[0]-0.25,p3[1]], 0.05,10.0,color="b",linewidth=1.0)

pyplot.axis('off')
pyplot.savefig(path+name+'_diagram.png',bbox_inches="tight")


We define the number of states and of radiation fields.


In [4]:
Ne=3
Nl=2

We define a few important symbols.


In [5]:
c,hbar,e,mu0, epsilon0=symbols("c hbar e mu0 varepsilon0",positive=True)
fprint([c,hbar,e,mu0, epsilon0],print_ascii=print_ascii)


Out[5]:
$$\left [ c, \quad \hbar, \quad e, \quad \mu_{0}, \quad \varepsilon_{0}\right ]$$

In [6]:
t,X,Y,Z,R,Phi=symbols("t X Y Z R Phi",real=True)
RR=Matrix([R*cos(Phi),R*sin(Phi),Z])
#RR=Matrix([X,Y,Z])
fprint([t,RR],print_ascii=print_ascii)


Out[6]:
$$\left [ t, \quad \left[\begin{matrix}R \cos{\left (\Phi \right )}\\R \sin{\left (\Phi \right )}\\Z\end{matrix}\right]\right ]$$

We define the variables related to the laser field.


In [7]:
E0,omega_laser=define_laser_variables(Nl, variables=[t,R,Z])
fprint(E0,print_ascii=print_ascii)


Out[7]:
$$\left [ \operatorname{E^{1}_{0}}{\left (t,R,Z \right )}, \quad \operatorname{E^{2}_{0}}{\left (t,R,Z \right )}\right ]$$

In [8]:
fprint(omega_laser,print_ascii=print_ascii)


Out[8]:
$$\left [ \varpi_{1}, \quad \varpi_{2}\right ]$$

We write two electric fields propagating trough the $\hat{x}$ direction polarized in the $\hat{z}$ direction. First the wave vectors:


In [9]:
phi1=0 ; theta1=0; alpha1=pi/2; beta1=pi/8
phi2=0; theta2=pi; alpha2=pi/2; beta2=pi/8

k1=Matrix([cos(phi1)*sin(theta1),sin(phi1)*sin(theta1),cos(theta1)])
k2=Matrix([cos(phi2)*sin(theta2),sin(phi2)*sin(theta2),cos(theta2)])

k=[k1,k2]

fprint(k,print_ascii=print_ascii)


Out[9]:
$$\left [ \left[\begin{matrix}0\\0\\1\end{matrix}\right], \quad \left[\begin{matrix}0\\0\\-1\end{matrix}\right]\right ]$$

The polarization vectors.


In [10]:
ep1=polarization_vector(phi1,theta1,alpha1,beta1, 1)
ep2=polarization_vector(phi2,theta2,alpha2,beta2, 1)

em1=ep1.conjugate()
em2=ep2.conjugate()

ep=[ep1,ep2]
em=[em1,em2]

fprint([ep,em],print_ascii=print_ascii)


Out[10]:
$$\left [ \left [ \left[\begin{matrix}- \frac{\sqrt{2}}{2}\\- \frac{\sqrt{2} i}{2}\\0\end{matrix}\right], \quad \left[\begin{matrix}\frac{\sqrt{2}}{2}\\- \frac{\sqrt{2} i}{2}\\0\end{matrix}\right]\right ], \quad \left [ \left[\begin{matrix}- \frac{\sqrt{2}}{2}\\\frac{\sqrt{2} i}{2}\\0\end{matrix}\right], \quad \left[\begin{matrix}\frac{\sqrt{2}}{2}\\\frac{\sqrt{2} i}{2}\\0\end{matrix}\right]\right ]\right ]$$

The electric field (evaluated in $\vec{R}=0$).


In [11]:
zero_vect=Matrix([0,0,0])
E_cartesian = [(+E0[l]            *ep[l]*exp(-I*omega_laser[l]*(t-k[l].dot(RR)/c)) 
                +E0[l].conjugate()*em[l]*exp(+I*omega_laser[l]*(t-k[l].dot(RR)/c)))/2 
                    for l in range(Nl)]

fprint(E_cartesian,print_ascii=print_ascii)


Out[11]:
$$\left [ \left[\begin{matrix}- \frac{\sqrt{2}}{4} \operatorname{E^{1}_{0}}{\left (t,R,Z \right )} e^{- i \varpi_{1} \left(- \frac{Z}{c} + t\right)} - \frac{\sqrt{2}}{4} e^{i \varpi_{1} \left(- \frac{Z}{c} + t\right)} \overline{\operatorname{E^{1}_{0}}{\left (t,R,Z \right )}}\\- \frac{\sqrt{2} i}{4} \operatorname{E^{1}_{0}}{\left (t,R,Z \right )} e^{- i \varpi_{1} \left(- \frac{Z}{c} + t\right)} + \frac{\sqrt{2} i}{4} e^{i \varpi_{1} \left(- \frac{Z}{c} + t\right)} \overline{\operatorname{E^{1}_{0}}{\left (t,R,Z \right )}}\\0\end{matrix}\right], \quad \left[\begin{matrix}\frac{\sqrt{2}}{4} \operatorname{E^{2}_{0}}{\left (t,R,Z \right )} e^{- i \varpi_{2} \left(\frac{Z}{c} + t\right)} + \frac{\sqrt{2}}{4} e^{i \varpi_{2} \left(\frac{Z}{c} + t\right)} \overline{\operatorname{E^{2}_{0}}{\left (t,R,Z \right )}}\\- \frac{\sqrt{2} i}{4} \operatorname{E^{2}_{0}}{\left (t,R,Z \right )} e^{- i \varpi_{2} \left(\frac{Z}{c} + t\right)} + \frac{\sqrt{2} i}{4} e^{i \varpi_{2} \left(\frac{Z}{c} + t\right)} \overline{\operatorname{E^{2}_{0}}{\left (t,R,Z \right )}}\\0\end{matrix}\right]\right ]$$

In [12]:
l1=PlaneWave(phi1,theta1,alpha1,beta1,color="red")
l2=PlaneWave(phi2,theta2,alpha2,beta2,color="blue")

laseres=[l1,l2]
Nl=len(laseres)

fig = pyplot.figure(); ax = fig.gca(projection='3d')
draw_lasers_3d(ax,laseres,path+name+'_lasers.png')


We write the electric fields in the helicity basis (see notebook "Vectors in the helicity basis and the electric field").


In [13]:
E=[cartesian_to_helicity(E_cartesian[l]).expand() for l in range(Nl)]
fprint(E,print_ascii=print_ascii)


Out[13]:
$$\left [ \left[\begin{matrix}- \frac{1}{2} \operatorname{E^{1}_{0}}{\left (t,R,Z \right )} e^{- i t \varpi_{1}} e^{\frac{i Z}{c} \varpi_{1}}\\0\\\frac{1}{2} e^{i t \varpi_{1}} e^{- \frac{i Z}{c} \varpi_{1}} \overline{\operatorname{E^{1}_{0}}{\left (t,R,Z \right )}}\end{matrix}\right], \quad \left[\begin{matrix}\frac{1}{2} e^{i t \varpi_{2}} e^{\frac{i Z}{c} \varpi_{2}} \overline{\operatorname{E^{2}_{0}}{\left (t,R,Z \right )}}\\0\\- \frac{1}{2} \operatorname{E^{2}_{0}}{\left (t,R,Z \right )} e^{- i t \varpi_{2}} e^{- \frac{i Z}{c} \varpi_{2}}\end{matrix}\right]\right ]$$

We define the position operator.


In [14]:
r=define_r_components(Ne,helicity=True,explicitly_hermitian=True)
#Ladder means that r_{p;31}=0
r=[ri.subs({r[0][2,0]:0,r[1][2,0]:0,r[2][2,0]:0}) for ri in r]
fprint(r,print_ascii=print_ascii)


Out[14]:
$$\left [ \left[\begin{matrix}0 & - r_{+1;21} & 0\\r_{-1;21} & 0 & - r_{+1;32}\\0 & r_{-1;32} & 0\end{matrix}\right], \quad \left[\begin{matrix}0 & r_{0;21} & 0\\r_{0;21} & 0 & r_{0;32}\\0 & r_{0;32} & 0\end{matrix}\right], \quad \left[\begin{matrix}0 & - r_{-1;21} & 0\\r_{+1;21} & 0 & - r_{-1;32}\\0 & r_{+1;32} & 0\end{matrix}\right]\right ]$$

The frequencies of the energy levels, the resonant frequencies, and the decay frequencies.


In [15]:
omega_level,omega,gamma=define_frequencies(Ne,explicitly_antisymmetric=True)
#Ladder means gamma31=0
gamma=gamma.subs({gamma[2,0]:0})

fprint(omega_level,print_ascii=print_ascii)


Out[15]:
$$\left [ \omega_{1}, \quad \omega_{2}, \quad \omega_{3}\right ]$$

In [16]:
fprint(omega, print_ascii=print_ascii)


Out[16]:
$$\left[\begin{matrix}0 & - \omega_{21} & - \omega_{31}\\\omega_{21} & 0 & - \omega_{32}\\\omega_{31} & \omega_{32} & 0\end{matrix}\right]$$

In [17]:
fprint(gamma, print_ascii=print_ascii)


Out[17]:
$$\left[\begin{matrix}0 & - \gamma_{21} & 0\\\gamma_{21} & 0 & - \gamma_{32}\\0 & \gamma_{32} & 0\end{matrix}\right]$$

The atomic hamiltonian is


In [18]:
H0=Matrix([[hbar*omega_level[i]*KroneckerDelta(i,j) for j in range(Ne)] for i in range(Ne)])
fprint(H0, print_ascii=print_ascii)


Out[18]:
$$\left[\begin{matrix}\hbar \omega_{1} & 0 & 0\\0 & \hbar \omega_{2} & 0\\0 & 0 & \hbar \omega_{3}\end{matrix}\right]$$

The interaction hamiltonian is


In [19]:
zero_matrix=zeros(Ne,Ne)
H1=sum([ e*helicity_dot_product(E[l],r) for l in range(Nl)],zero_matrix)
fprint(H1,print_ascii=print_ascii)


Out[19]:
$$\left[\begin{matrix}0 & e \left(- \frac{r_{+1;21}}{2} \operatorname{E^{2}_{0}}{\left (t,R,Z \right )} e^{- i t \varpi_{2}} e^{- \frac{i Z}{c} \varpi_{2}} + \frac{r_{-1;21}}{2} e^{i t \varpi_{2}} e^{\frac{i Z}{c} \varpi_{2}} \overline{\operatorname{E^{2}_{0}}{\left (t,R,Z \right )}}\right) + e \left(\frac{r_{+1;21}}{2} e^{i t \varpi_{1}} e^{- \frac{i Z}{c} \varpi_{1}} \overline{\operatorname{E^{1}_{0}}{\left (t,R,Z \right )}} - \frac{r_{-1;21}}{2} \operatorname{E^{1}_{0}}{\left (t,R,Z \right )} e^{- i t \varpi_{1}} e^{\frac{i Z}{c} \varpi_{1}}\right) & 0\\e \left(\frac{r_{+1;21}}{2} \operatorname{E^{1}_{0}}{\left (t,R,Z \right )} e^{- i t \varpi_{1}} e^{\frac{i Z}{c} \varpi_{1}} - \frac{r_{-1;21}}{2} e^{i t \varpi_{1}} e^{- \frac{i Z}{c} \varpi_{1}} \overline{\operatorname{E^{1}_{0}}{\left (t,R,Z \right )}}\right) + e \left(- \frac{r_{+1;21}}{2} e^{i t \varpi_{2}} e^{\frac{i Z}{c} \varpi_{2}} \overline{\operatorname{E^{2}_{0}}{\left (t,R,Z \right )}} + \frac{r_{-1;21}}{2} \operatorname{E^{2}_{0}}{\left (t,R,Z \right )} e^{- i t \varpi_{2}} e^{- \frac{i Z}{c} \varpi_{2}}\right) & 0 & e \left(- \frac{r_{+1;32}}{2} \operatorname{E^{2}_{0}}{\left (t,R,Z \right )} e^{- i t \varpi_{2}} e^{- \frac{i Z}{c} \varpi_{2}} + \frac{r_{-1;32}}{2} e^{i t \varpi_{2}} e^{\frac{i Z}{c} \varpi_{2}} \overline{\operatorname{E^{2}_{0}}{\left (t,R,Z \right )}}\right) + e \left(\frac{r_{+1;32}}{2} e^{i t \varpi_{1}} e^{- \frac{i Z}{c} \varpi_{1}} \overline{\operatorname{E^{1}_{0}}{\left (t,R,Z \right )}} - \frac{r_{-1;32}}{2} \operatorname{E^{1}_{0}}{\left (t,R,Z \right )} e^{- i t \varpi_{1}} e^{\frac{i Z}{c} \varpi_{1}}\right)\\0 & e \left(\frac{r_{+1;32}}{2} \operatorname{E^{1}_{0}}{\left (t,R,Z \right )} e^{- i t \varpi_{1}} e^{\frac{i Z}{c} \varpi_{1}} - \frac{r_{-1;32}}{2} e^{i t \varpi_{1}} e^{- \frac{i Z}{c} \varpi_{1}} \overline{\operatorname{E^{1}_{0}}{\left (t,R,Z \right )}}\right) + e \left(- \frac{r_{+1;32}}{2} e^{i t \varpi_{2}} e^{\frac{i Z}{c} \varpi_{2}} \overline{\operatorname{E^{2}_{0}}{\left (t,R,Z \right )}} + \frac{r_{-1;32}}{2} \operatorname{E^{2}_{0}}{\left (t,R,Z \right )} e^{- i t \varpi_{2}} e^{- \frac{i Z}{c} \varpi_{2}}\right) & 0\end{matrix}\right]$$

and the complete hamiltonian is


In [20]:
H=H0+H1

Rotating wave approximation

Notice that the electric field can be separated by terms with positive and negative frequency:


In [21]:
E_cartesian_p=[E0[l]/2            *ep[l]*exp(-I*omega_laser[l]*(t-k[l].dot(RR)/c)) for l in range(Nl)]
E_cartesian_m=[E0[l].conjugate()/2*em[l]*exp(I*omega_laser[l]*(t-k[l].dot(RR)/c)) for l in range(Nl)]

E_p=[cartesian_to_helicity(E_cartesian_p[l]) for l in range(Nl)]
E_m=[cartesian_to_helicity(E_cartesian_m[l]) for l in range(Nl)]

fprint([E_p,E_m], print_ascii=print_ascii)


Out[21]:
$$\left [ \left [ \left[\begin{matrix}- \frac{1}{2} \operatorname{E^{1}_{0}}{\left (t,R,Z \right )} e^{- i \varpi_{1} \left(- \frac{Z}{c} + t\right)}\\0\\0\end{matrix}\right], \quad \left[\begin{matrix}0\\0\\- \frac{1}{2} \operatorname{E^{2}_{0}}{\left (t,R,Z \right )} e^{- i \varpi_{2} \left(\frac{Z}{c} + t\right)}\end{matrix}\right]\right ], \quad \left [ \left[\begin{matrix}0\\0\\\frac{1}{2} e^{i \varpi_{1} \left(- \frac{Z}{c} + t\right)} \overline{\operatorname{E^{1}_{0}}{\left (t,R,Z \right )}}\end{matrix}\right], \quad \left[\begin{matrix}\frac{1}{2} e^{i \varpi_{2} \left(\frac{Z}{c} + t\right)} \overline{\operatorname{E^{2}_{0}}{\left (t,R,Z \right )}}\\0\\0\end{matrix}\right]\right ]\right ]$$

In [22]:
fprint( simplify(sum([E[l] for l in range(Nl)],zero_vect)-(sum([E_p[l]+E_m[l] for l in range(Nl)],zero_vect) )), print_ascii=print_ascii)


Out[22]:
$$\left[\begin{matrix}0\\0\\0\end{matrix}\right]$$

The position operator can also be separated in this way. We go to the interaction picture (with $\hat{H}_0$ as the undisturbed hamiltonian)


In [23]:
r_I=[ Matrix([[exp(I*omega[i,j]*t)*r[p][i,j] for j in range(Ne)] for i in range(Ne)]) for p in range(3)]
fprint(r_I[0], print_ascii=print_ascii)


Out[23]:
$$\left[\begin{matrix}0 & - r_{+1;21} e^{- i \omega_{21} t} & 0\\r_{-1;21} e^{i \omega_{21} t} & 0 & - r_{+1;32} e^{- i \omega_{32} t}\\0 & r_{-1;32} e^{i \omega_{32} t} & 0\end{matrix}\right]$$

In [24]:
fprint(r_I[1], print_ascii=print_ascii)


Out[24]:
$$\left[\begin{matrix}0 & r_{0;21} e^{- i \omega_{21} t} & 0\\r_{0;21} e^{i \omega_{21} t} & 0 & r_{0;32} e^{- i \omega_{32} t}\\0 & r_{0;32} e^{i \omega_{32} t} & 0\end{matrix}\right]$$

In [25]:
fprint(r_I[2], print_ascii=print_ascii)


Out[25]:
$$\left[\begin{matrix}0 & - r_{-1;21} e^{- i \omega_{21} t} & 0\\r_{+1;21} e^{i \omega_{21} t} & 0 & - r_{-1;32} e^{- i \omega_{32} t}\\0 & r_{+1;32} e^{i \omega_{32} t} & 0\end{matrix}\right]$$

Which can be decomposed in positive and negative frequencies as


In [26]:
r_I_p=[ Matrix([[ delta_greater(j,i)*exp(-I*omega[j,i]*t)*r[p][i,j] for j in range(Ne)]for i in range(Ne)]) for p in range(3)]
fprint(r_I_p[0], print_ascii=print_ascii)


Out[26]:
$$\left[\begin{matrix}0 & - r_{+1;21} e^{- i \omega_{21} t} & 0\\0 & 0 & - r_{+1;32} e^{- i \omega_{32} t}\\0 & 0 & 0\end{matrix}\right]$$

In [27]:
fprint(r_I_p[1], print_ascii=print_ascii)


Out[27]:
$$\left[\begin{matrix}0 & r_{0;21} e^{- i \omega_{21} t} & 0\\0 & 0 & r_{0;32} e^{- i \omega_{32} t}\\0 & 0 & 0\end{matrix}\right]$$

In [28]:
fprint(r_I_p[2], print_ascii=print_ascii)


Out[28]:
$$\left[\begin{matrix}0 & - r_{-1;21} e^{- i \omega_{21} t} & 0\\0 & 0 & - r_{-1;32} e^{- i \omega_{32} t}\\0 & 0 & 0\end{matrix}\right]$$

In [29]:
r_I_m=[ Matrix([[ delta_lesser( j,i)*exp( I*omega[i,j]*t)*r[p][i,j] for j in range(Ne)]for i in range(Ne)]) for p in range(3)]
fprint(r_I_m[0],print_ascii=print_ascii)


Out[29]:
$$\left[\begin{matrix}0 & 0 & 0\\r_{-1;21} e^{i \omega_{21} t} & 0 & 0\\0 & r_{-1;32} e^{i \omega_{32} t} & 0\end{matrix}\right]$$

In [30]:
fprint(r_I_m[1], print_ascii=print_ascii)


Out[30]:
$$\left[\begin{matrix}0 & 0 & 0\\r_{0;21} e^{i \omega_{21} t} & 0 & 0\\0 & r_{0;32} e^{i \omega_{32} t} & 0\end{matrix}\right]$$

In [31]:
fprint(r_I_m[2], print_ascii=print_ascii)


Out[31]:
$$\left[\begin{matrix}0 & 0 & 0\\r_{+1;21} e^{i \omega_{21} t} & 0 & 0\\0 & r_{+1;32} e^{i \omega_{32} t} & 0\end{matrix}\right]$$

that summed equal $\vec{\hat{r}}_I$


In [32]:
fprint( [r_I[p]-(r_I_p[p]+r_I_m[p]) for p in range(3)] , print_ascii=print_ascii)


Out[32]:
$$\left [ \left[\begin{matrix}0 & 0 & 0\\0 & 0 & 0\\0 & 0 & 0\end{matrix}\right], \quad \left[\begin{matrix}0 & 0 & 0\\0 & 0 & 0\\0 & 0 & 0\end{matrix}\right], \quad \left[\begin{matrix}0 & 0 & 0\\0 & 0 & 0\\0 & 0 & 0\end{matrix}\right]\right ]$$

Thus the interaction hamiltonian in the interaciton picture is \begin{equation} \hat{H}_{1I}=e\vec{E}\cdot \vec{\hat{r}}_I= e(\vec{E}^{(+)}\cdot \vec{\hat{r}}^{(+)}_I + \vec{E}^{(+)}\cdot \vec{\hat{r}}^{(-)}_I + \vec{E}^{(-)}\cdot \vec{\hat{r}}^{(+)}_I + \vec{E}^{(-)}\cdot \vec{\hat{r}}^{(-)}_I) \end{equation}


In [33]:
H1I=sum([ e*helicity_dot_product(E[l],r_I) for l in range(Nl)],zero_matrix)
fprint(H1I,print_ascii=print_ascii)


Out[33]:
$$\left[\begin{matrix}0 & e \left(- \frac{r_{+1;21}}{2} \operatorname{E^{2}_{0}}{\left (t,R,Z \right )} e^{- i \omega_{21} t} e^{- i t \varpi_{2}} e^{- \frac{i Z}{c} \varpi_{2}} + \frac{r_{-1;21}}{2} e^{- i \omega_{21} t} e^{i t \varpi_{2}} e^{\frac{i Z}{c} \varpi_{2}} \overline{\operatorname{E^{2}_{0}}{\left (t,R,Z \right )}}\right) + e \left(\frac{r_{+1;21}}{2} e^{- i \omega_{21} t} e^{i t \varpi_{1}} e^{- \frac{i Z}{c} \varpi_{1}} \overline{\operatorname{E^{1}_{0}}{\left (t,R,Z \right )}} - \frac{r_{-1;21}}{2} \operatorname{E^{1}_{0}}{\left (t,R,Z \right )} e^{- i \omega_{21} t} e^{- i t \varpi_{1}} e^{\frac{i Z}{c} \varpi_{1}}\right) & 0\\e \left(\frac{r_{+1;21}}{2} \operatorname{E^{1}_{0}}{\left (t,R,Z \right )} e^{i \omega_{21} t} e^{- i t \varpi_{1}} e^{\frac{i Z}{c} \varpi_{1}} - \frac{r_{-1;21}}{2} e^{i \omega_{21} t} e^{i t \varpi_{1}} e^{- \frac{i Z}{c} \varpi_{1}} \overline{\operatorname{E^{1}_{0}}{\left (t,R,Z \right )}}\right) + e \left(- \frac{r_{+1;21}}{2} e^{i \omega_{21} t} e^{i t \varpi_{2}} e^{\frac{i Z}{c} \varpi_{2}} \overline{\operatorname{E^{2}_{0}}{\left (t,R,Z \right )}} + \frac{r_{-1;21}}{2} \operatorname{E^{2}_{0}}{\left (t,R,Z \right )} e^{i \omega_{21} t} e^{- i t \varpi_{2}} e^{- \frac{i Z}{c} \varpi_{2}}\right) & 0 & e \left(- \frac{r_{+1;32}}{2} \operatorname{E^{2}_{0}}{\left (t,R,Z \right )} e^{- i \omega_{32} t} e^{- i t \varpi_{2}} e^{- \frac{i Z}{c} \varpi_{2}} + \frac{r_{-1;32}}{2} e^{- i \omega_{32} t} e^{i t \varpi_{2}} e^{\frac{i Z}{c} \varpi_{2}} \overline{\operatorname{E^{2}_{0}}{\left (t,R,Z \right )}}\right) + e \left(\frac{r_{+1;32}}{2} e^{- i \omega_{32} t} e^{i t \varpi_{1}} e^{- \frac{i Z}{c} \varpi_{1}} \overline{\operatorname{E^{1}_{0}}{\left (t,R,Z \right )}} - \frac{r_{-1;32}}{2} \operatorname{E^{1}_{0}}{\left (t,R,Z \right )} e^{- i \omega_{32} t} e^{- i t \varpi_{1}} e^{\frac{i Z}{c} \varpi_{1}}\right)\\0 & e \left(\frac{r_{+1;32}}{2} \operatorname{E^{1}_{0}}{\left (t,R,Z \right )} e^{i \omega_{32} t} e^{- i t \varpi_{1}} e^{\frac{i Z}{c} \varpi_{1}} - \frac{r_{-1;32}}{2} e^{i \omega_{32} t} e^{i t \varpi_{1}} e^{- \frac{i Z}{c} \varpi_{1}} \overline{\operatorname{E^{1}_{0}}{\left (t,R,Z \right )}}\right) + e \left(- \frac{r_{+1;32}}{2} e^{i \omega_{32} t} e^{i t \varpi_{2}} e^{\frac{i Z}{c} \varpi_{2}} \overline{\operatorname{E^{2}_{0}}{\left (t,R,Z \right )}} + \frac{r_{-1;32}}{2} \operatorname{E^{2}_{0}}{\left (t,R,Z \right )} e^{i \omega_{32} t} e^{- i t \varpi_{2}} e^{- \frac{i Z}{c} \varpi_{2}}\right) & 0\end{matrix}\right]$$

Since both $\omega^l$ and $\omega_{ij}$ are in the order of THz, the terms that have frequencies with the same sign are summed, and thus also of the order of THz. The frequencies in the terms with oposite signs however, are detunings of the order of MHz. Since we are only interested in the coarse-grained evolution of the density matrix, we may omit the fast terms and approximate

\begin{equation} \hat{H}_{1I} \simeq \hat{H}_{1I,RWA}= e( \vec{E}^{(+)}\cdot \vec{\hat{r}}^{(-)}_I + \vec{E}^{(-)}\cdot \vec{\hat{r}}^{(+)}_I ) \end{equation}

That is known as the rotating wave approximation (RWA).


In [34]:
H1IRWA=sum( [ (e*(helicity_dot_product(E_p[l],r_I_m)+helicity_dot_product(E_m[l],r_I_p))) for l in range(Nl)],zero_matrix)
fprint(H1IRWA,print_ascii=print_ascii)


Out[34]:
$$\left[\begin{matrix}0 & \frac{e r_{+1;21}}{2} e^{- i \omega_{21} t} e^{i \varpi_{1} \left(- \frac{Z}{c} + t\right)} \overline{\operatorname{E^{1}_{0}}{\left (t,R,Z \right )}} + \frac{e r_{-1;21}}{2} e^{- i \omega_{21} t} e^{i \varpi_{2} \left(\frac{Z}{c} + t\right)} \overline{\operatorname{E^{2}_{0}}{\left (t,R,Z \right )}} & 0\\\frac{e r_{+1;21}}{2} \operatorname{E^{1}_{0}}{\left (t,R,Z \right )} e^{i \omega_{21} t} e^{- i \varpi_{1} \left(- \frac{Z}{c} + t\right)} + \frac{e r_{-1;21}}{2} \operatorname{E^{2}_{0}}{\left (t,R,Z \right )} e^{i \omega_{21} t} e^{- i \varpi_{2} \left(\frac{Z}{c} + t\right)} & 0 & \frac{e r_{+1;32}}{2} e^{- i \omega_{32} t} e^{i \varpi_{1} \left(- \frac{Z}{c} + t\right)} \overline{\operatorname{E^{1}_{0}}{\left (t,R,Z \right )}} + \frac{e r_{-1;32}}{2} e^{- i \omega_{32} t} e^{i \varpi_{2} \left(\frac{Z}{c} + t\right)} \overline{\operatorname{E^{2}_{0}}{\left (t,R,Z \right )}}\\0 & \frac{e r_{+1;32}}{2} \operatorname{E^{1}_{0}}{\left (t,R,Z \right )} e^{i \omega_{32} t} e^{- i \varpi_{1} \left(- \frac{Z}{c} + t\right)} + \frac{e r_{-1;32}}{2} \operatorname{E^{2}_{0}}{\left (t,R,Z \right )} e^{i \omega_{32} t} e^{- i \varpi_{2} \left(\frac{Z}{c} + t\right)} & 0\end{matrix}\right]$$

The matrix element $(\hat{H}_{1I,RWA})_{21}$ element is


In [35]:
fprint(H1IRWA[1,0].expand(),print_ascii=print_ascii)


Out[35]:
$$\frac{e r_{+1;21}}{2} \operatorname{E^{1}_{0}}{\left (t,R,Z \right )} e^{i \omega_{21} t} e^{- i t \varpi_{1}} e^{\frac{i Z}{c} \varpi_{1}} + \frac{e r_{-1;21}}{2} \operatorname{E^{2}_{0}}{\left (t,R,Z \right )} e^{i \omega_{21} t} e^{- i t \varpi_{2}} e^{- \frac{i Z}{c} \varpi_{2}}$$

But if the detuning $\omega_{21}-\omega^1 \ll \omega_{21}-\omega^2$ (the second field is far detuned from the $1 \rightarrow 2$ transition), then $\omega_{21}-\omega^2$ may be also considered too high a frequency to be relevant to coarse-grained evolution. So we might neclect that term in $(\hat{H}_{1I,RWA})_{21}$ and similarly neglect the $\omega_{32}-\omega^1$ for term in $(\hat{H}_{1I,RWA})_{32}$:


In [36]:
fprint(H1IRWA[2,1].expand(),print_ascii=print_ascii)


Out[36]:
$$\frac{e r_{+1;32}}{2} \operatorname{E^{1}_{0}}{\left (t,R,Z \right )} e^{i \omega_{32} t} e^{- i t \varpi_{1}} e^{\frac{i Z}{c} \varpi_{1}} + \frac{e r_{-1;32}}{2} \operatorname{E^{2}_{0}}{\left (t,R,Z \right )} e^{i \omega_{32} t} e^{- i t \varpi_{2}} e^{- \frac{i Z}{c} \varpi_{2}}$$

In other words, if the detunings in our experiments allow the approximmation, we might choose which frequency components $\omega^l$ excite which transitions. Let us say that $L_{ij}$ is the set of $l$ such that $\omega^l$ excites the transition $i\rightarrow j$


In [37]:
Lij=[[1,2,[1]],[2,3,[2]]]
Lij=formatLij(Lij,Ne)
print array(Lij)


[[[] [1] []]
 [[1] [] [2]]
 [[] [2] []]]

Thus the interacion hamiltonian in the interaction picture can be approximated as


In [38]:
H1IRWA =sum([ e*( helicity_dot_product( E_p[l],vector_element(r_I_m,i,j)) ) * ket(i+1,Ne)*bra(j+1,Ne) 
            for l in range(Nl) for j in range(Ne) for i in range(Ne) if l+1 in Lij[i][j] ],zero_matrix)
H1IRWA+=sum([ e*( helicity_dot_product( E_m[l],vector_element(r_I_p,i,j)) ) * ket(i+1,Ne)*bra(j+1,Ne) 
            for l in range(Nl) for j in range(Ne) for i in range(Ne) if l+1 in Lij[i][j] ],zero_matrix)

fprint(H1IRWA, print_ascii=print_ascii)


Out[38]:
$$\left[\begin{matrix}0 & \frac{e r_{+1;21}}{2} e^{- i \omega_{21} t} e^{i \varpi_{1} \left(- \frac{Z}{c} + t\right)} \overline{\operatorname{E^{1}_{0}}{\left (t,R,Z \right )}} & 0\\\frac{e r_{+1;21}}{2} \operatorname{E^{1}_{0}}{\left (t,R,Z \right )} e^{i \omega_{21} t} e^{- i \varpi_{1} \left(- \frac{Z}{c} + t\right)} & 0 & \frac{e r_{-1;32}}{2} e^{- i \omega_{32} t} e^{i \varpi_{2} \left(\frac{Z}{c} + t\right)} \overline{\operatorname{E^{2}_{0}}{\left (t,R,Z \right )}}\\0 & \frac{e r_{-1;32}}{2} \operatorname{E^{2}_{0}}{\left (t,R,Z \right )} e^{i \omega_{32} t} e^{- i \varpi_{2} \left(\frac{Z}{c} + t\right)} & 0\end{matrix}\right]$$

Returning to the Schrödinger picture we have.


In [39]:
r_p=[ Matrix([[ delta_greater(j,i)*r[p][i,j] for j in range(Ne)]for i in range(Ne)]) for p in range(3)]
fprint(r_p, print_ascii=print_ascii)


Out[39]:
$$\left [ \left[\begin{matrix}0 & - r_{+1;21} & 0\\0 & 0 & - r_{+1;32}\\0 & 0 & 0\end{matrix}\right], \quad \left[\begin{matrix}0 & r_{0;21} & 0\\0 & 0 & r_{0;32}\\0 & 0 & 0\end{matrix}\right], \quad \left[\begin{matrix}0 & - r_{-1;21} & 0\\0 & 0 & - r_{-1;32}\\0 & 0 & 0\end{matrix}\right]\right ]$$

In [40]:
r_m=[ Matrix([[ delta_lesser( j,i)*r[p][i,j] for j in range(Ne)]for i in range(Ne)]) for p in range(3)]
fprint(r_m, print_ascii=print_ascii)


Out[40]:
$$\left [ \left[\begin{matrix}0 & 0 & 0\\r_{-1;21} & 0 & 0\\0 & r_{-1;32} & 0\end{matrix}\right], \quad \left[\begin{matrix}0 & 0 & 0\\r_{0;21} & 0 & 0\\0 & r_{0;32} & 0\end{matrix}\right], \quad \left[\begin{matrix}0 & 0 & 0\\r_{+1;21} & 0 & 0\\0 & r_{+1;32} & 0\end{matrix}\right]\right ]$$

In [41]:
fprint( [r[p]-(r_p[p]+r_m[p]) for p in range(3)] , print_ascii=print_ascii)


Out[41]:
$$\left [ \left[\begin{matrix}0 & 0 & 0\\0 & 0 & 0\\0 & 0 & 0\end{matrix}\right], \quad \left[\begin{matrix}0 & 0 & 0\\0 & 0 & 0\\0 & 0 & 0\end{matrix}\right], \quad \left[\begin{matrix}0 & 0 & 0\\0 & 0 & 0\\0 & 0 & 0\end{matrix}\right]\right ]$$

Thus the interaction hamiltonian in the Schrödinger picture in the rotating wave approximation is


In [42]:
H1RWA =sum([ e*( helicity_dot_product( E_p[l],vector_element(r_m,i,j)) ) * ket(i+1,Ne)*bra(j+1,Ne) 
            for l in range(Nl) for j in range(Ne) for i in range(Ne) if l+1 in Lij[i][j] ],zero_matrix)
H1RWA+=sum([ e*( helicity_dot_product( E_m[l],vector_element(r_p,i,j)) ) * ket(i+1,Ne)*bra(j+1,Ne) 
            for l in range(Nl) for j in range(Ne) for i in range(Ne) if l+1 in Lij[i][j] ],zero_matrix)

fprint(H1RWA, print_ascii=print_ascii)


Out[42]:
$$\left[\begin{matrix}0 & \frac{e r_{+1;21}}{2} e^{i \varpi_{1} \left(- \frac{Z}{c} + t\right)} \overline{\operatorname{E^{1}_{0}}{\left (t,R,Z \right )}} & 0\\\frac{e r_{+1;21}}{2} \operatorname{E^{1}_{0}}{\left (t,R,Z \right )} e^{- i \varpi_{1} \left(- \frac{Z}{c} + t\right)} & 0 & \frac{e r_{-1;32}}{2} e^{i \varpi_{2} \left(\frac{Z}{c} + t\right)} \overline{\operatorname{E^{2}_{0}}{\left (t,R,Z \right )}}\\0 & \frac{e r_{-1;32}}{2} \operatorname{E^{2}_{0}}{\left (t,R,Z \right )} e^{- i \varpi_{2} \left(\frac{Z}{c} + t\right)} & 0\end{matrix}\right]$$

And the complete hamiltonian in the Schrödinger picture in the rotating wave approximation is


In [43]:
HRWA=H0+H1RWA
fprint(HRWA, print_ascii=print_ascii)


Out[43]:
$$\left[\begin{matrix}\hbar \omega_{1} & \frac{e r_{+1;21}}{2} e^{i \varpi_{1} \left(- \frac{Z}{c} + t\right)} \overline{\operatorname{E^{1}_{0}}{\left (t,R,Z \right )}} & 0\\\frac{e r_{+1;21}}{2} \operatorname{E^{1}_{0}}{\left (t,R,Z \right )} e^{- i \varpi_{1} \left(- \frac{Z}{c} + t\right)} & \hbar \omega_{2} & \frac{e r_{-1;32}}{2} e^{i \varpi_{2} \left(\frac{Z}{c} + t\right)} \overline{\operatorname{E^{2}_{0}}{\left (t,R,Z \right )}}\\0 & \frac{e r_{-1;32}}{2} \operatorname{E^{2}_{0}}{\left (t,R,Z \right )} e^{- i \varpi_{2} \left(\frac{Z}{c} + t\right)} & \hbar \omega_{3}\end{matrix}\right]$$

Rotating Frame

Next we will make a phase transformation in order to eliminate the explicit time dependance of the equations.


In [44]:
cc,cctilde,phase=define_psi_coefficients(Ne)
fprint([cc,cctilde,phase], print_ascii=print_ascii)


Out[44]:
$$\left [ \left[\begin{matrix}\operatorname{c_{1}}{\left (t \right )}\\\operatorname{c_{2}}{\left (t \right )}\\\operatorname{c_{3}}{\left (t \right )}\end{matrix}\right], \quad \left[\begin{matrix}\tilde{c}_{1}{\left (t \right )}\\\tilde{c}_{2}{\left (t \right )}\\\tilde{c}_{3}{\left (t \right )}\end{matrix}\right], \quad \left[\begin{matrix}\theta_{1}\\\theta_{2}\\\theta_{3}\end{matrix}\right]\right ]$$

In [45]:
phase=Matrix([ Function("theta_"+str(i+1),real=True)(t,Z) for i in range(Ne)])
phase


Out[45]:
$$\left[\begin{matrix}\theta_{1}{\left (t,Z \right )}\\\theta_{2}{\left (t,Z \right )}\\\theta_{3}{\left (t,Z \right )}\end{matrix}\right]$$

In [46]:
psi=Matrix([ exp(I*phase[i])*cctilde[i] for i in range(Ne)])
fprint(psi, print_ascii=print_ascii)


Out[46]:
$$\left[\begin{matrix}\tilde{c}_{1}{\left (t \right )} e^{i \theta_{1}{\left (t,Z \right )}}\\\tilde{c}_{2}{\left (t \right )} e^{i \theta_{2}{\left (t,Z \right )}}\\\tilde{c}_{3}{\left (t \right )} e^{i \theta_{3}{\left (t,Z \right )}}\end{matrix}\right]$$

The Schrödinger equation $i\hbar \partial_t |\psi\rangle=\hat{H}_{RWA}$ is


In [47]:
lhs=Matrix([(I*hbar*Derivative(psi[i],t).doit()).expand() for i in range(Ne)])
fprint(lhs, print_ascii=print_ascii)


Out[47]:
$$\left[\begin{matrix}- \hbar \tilde{c}_{1}{\left (t \right )} e^{i \theta_{1}{\left (t,Z \right )}} \frac{\partial}{\partial t} \theta_{1}{\left (t,Z \right )} + i \hbar e^{i \theta_{1}{\left (t,Z \right )}} \frac{d}{d t} \tilde{c}_{1}{\left (t \right )}\\- \hbar \tilde{c}_{2}{\left (t \right )} e^{i \theta_{2}{\left (t,Z \right )}} \frac{\partial}{\partial t} \theta_{2}{\left (t,Z \right )} + i \hbar e^{i \theta_{2}{\left (t,Z \right )}} \frac{d}{d t} \tilde{c}_{2}{\left (t \right )}\\- \hbar \tilde{c}_{3}{\left (t \right )} e^{i \theta_{3}{\left (t,Z \right )}} \frac{\partial}{\partial t} \theta_{3}{\left (t,Z \right )} + i \hbar e^{i \theta_{3}{\left (t,Z \right )}} \frac{d}{d t} \tilde{c}_{3}{\left (t \right )}\end{matrix}\right]$$

In [48]:
rhs=HRWA*psi

We multiply each of these equations by $e^{-i \theta_i}$ and substracting $i \theta_i \tilde{c}_i$


In [49]:
lhs_new=Matrix([simplify(  lhs[i]*exp(-I*phase[i]) +hbar*Derivative(phase[i],t)*cctilde[i] ) for i in range(Ne)])
fprint(lhs_new, print_ascii=print_ascii)


Out[49]:
$$\left[\begin{matrix}i \hbar \frac{d}{d t} \tilde{c}_{1}{\left (t \right )}\\i \hbar \frac{d}{d t} \tilde{c}_{2}{\left (t \right )}\\i \hbar \frac{d}{d t} \tilde{c}_{3}{\left (t \right )}\end{matrix}\right]$$

In [50]:
rhs_new=Matrix([simplify(  rhs[i]*exp(-I*phase[i])
                         +hbar*Derivative(phase[i],t)*cctilde[i] ).expand() for i in range(Ne)])
fprint(rhs_new, print_ascii=print_ascii)


Out[50]:
$$\left[\begin{matrix}\frac{e r_{+1;21}}{2} \tilde{c}_{2}{\left (t \right )} e^{- i \theta_{1}{\left (t,Z \right )}} e^{i \theta_{2}{\left (t,Z \right )}} e^{i t \varpi_{1}} e^{- \frac{i Z}{c} \varpi_{1}} \overline{\operatorname{E^{1}_{0}}{\left (t,R,Z \right )}} + \hbar \omega_{1} \tilde{c}_{1}{\left (t \right )} + \hbar \tilde{c}_{1}{\left (t \right )} \frac{\partial}{\partial t} \theta_{1}{\left (t,Z \right )}\\\frac{e r_{+1;21}}{2} \operatorname{E^{1}_{0}}{\left (t,R,Z \right )} \tilde{c}_{1}{\left (t \right )} e^{i \theta_{1}{\left (t,Z \right )}} e^{- i \theta_{2}{\left (t,Z \right )}} e^{- i t \varpi_{1}} e^{\frac{i Z}{c} \varpi_{1}} + \frac{e r_{-1;32}}{2} \tilde{c}_{3}{\left (t \right )} e^{- i \theta_{2}{\left (t,Z \right )}} e^{i \theta_{3}{\left (t,Z \right )}} e^{i t \varpi_{2}} e^{\frac{i Z}{c} \varpi_{2}} \overline{\operatorname{E^{2}_{0}}{\left (t,R,Z \right )}} + \hbar \omega_{2} \tilde{c}_{2}{\left (t \right )} + \hbar \tilde{c}_{2}{\left (t \right )} \frac{\partial}{\partial t} \theta_{2}{\left (t,Z \right )}\\\frac{e r_{-1;32}}{2} \operatorname{E^{2}_{0}}{\left (t,R,Z \right )} \tilde{c}_{2}{\left (t \right )} e^{i \theta_{2}{\left (t,Z \right )}} e^{- i \theta_{3}{\left (t,Z \right )}} e^{- i t \varpi_{2}} e^{- \frac{i Z}{c} \varpi_{2}} + \hbar \omega_{3} \tilde{c}_{3}{\left (t \right )} + \hbar \tilde{c}_{3}{\left (t \right )} \frac{\partial}{\partial t} \theta_{3}{\left (t,Z \right )}\end{matrix}\right]$$

It can be seen that the equations loose their explicit time dependance only if $\omega^{1}(-Z/c+t) - \theta_{1} + \theta_{2}=0$ and $\omega^{2}(Z/c+t) - \theta_{2} + \theta_{3}=0$. Which is satisfied if


In [51]:
eq1=omega_laser[0]*(-Z/c+t)+phase[1]-phase[0]
eq2=omega_laser[1]*( Z/c+t)+phase[2]-phase[1]
pt=solve([eq1,eq2],[phase[1],phase[2]])
pt


Out[51]:
$$\left \{ \theta_{2}{\left (t,Z \right )} : \frac{Z \varpi_{1}}{c} - t \varpi_{1} + \theta_{1}{\left (t,Z \right )}, \quad \theta_{3}{\left (t,Z \right )} : \frac{Z \varpi_{1}}{c} - \frac{Z \varpi_{2}}{c} - t \varpi_{1} - t \varpi_{2} + \theta_{1}{\left (t,Z \right )}\right \}$$

Thus the equations become


In [52]:
fprint(lhs_new, print_ascii=print_ascii)


Out[52]:
$$\left[\begin{matrix}i \hbar \frac{d}{d t} \tilde{c}_{1}{\left (t \right )}\\i \hbar \frac{d}{d t} \tilde{c}_{2}{\left (t \right )}\\i \hbar \frac{d}{d t} \tilde{c}_{3}{\left (t \right )}\end{matrix}\right]$$

In [53]:
rhs_new=simplify(rhs_new.subs(pt)).expand().simplify()
fprint(rhs_new, print_ascii=print_ascii)


Out[53]:
$$\left[\begin{matrix}\frac{e r_{+1;21}}{2} \tilde{c}_{2}{\left (t \right )} \overline{\operatorname{E^{1}_{0}}{\left (t,R,Z \right )}} + \hbar \omega_{1} \tilde{c}_{1}{\left (t \right )} + \hbar \tilde{c}_{1}{\left (t \right )} \frac{\partial}{\partial t} \theta_{1}{\left (t,Z \right )}\\\frac{e r_{+1;21}}{2} \operatorname{E^{1}_{0}}{\left (t,R,Z \right )} \tilde{c}_{1}{\left (t \right )} + \frac{e r_{-1;32}}{2} \tilde{c}_{3}{\left (t \right )} \overline{\operatorname{E^{2}_{0}}{\left (t,R,Z \right )}} + \hbar \omega_{2} \tilde{c}_{2}{\left (t \right )} + \hbar \tilde{c}_{2}{\left (t \right )} \frac{\partial}{\partial t}\left(\frac{Z \varpi_{1}}{c} - t \varpi_{1} + \theta_{1}{\left (t,Z \right )}\right)\\\frac{e r_{-1;32}}{2} \operatorname{E^{2}_{0}}{\left (t,R,Z \right )} \tilde{c}_{2}{\left (t \right )} + \hbar \omega_{3} \tilde{c}_{3}{\left (t \right )} + \hbar \tilde{c}_{3}{\left (t \right )} \frac{\partial}{\partial t}\left(\frac{Z \varpi_{1}}{c} - \frac{Z \varpi_{2}}{c} - t \varpi_{1} - t \varpi_{2} + \theta_{1}{\left (t,Z \right )}\right)\end{matrix}\right]$$

It can be seen that this is the Schrödinger equation derived from an effective hamiltonian $\tilde{H}$


In [54]:
Htilde=Matrix([ [Derivative(rhs_new[i],cctilde[j]).doit().simplify() for j in range(Ne)] for i in range(Ne)])
fprint(Htilde, print_ascii=print_ascii)


Out[54]:
$$\left[\begin{matrix}\hbar \left(\omega_{1} + \frac{\partial}{\partial t} \theta_{1}{\left (t,Z \right )}\right) & \frac{e r_{+1;21}}{2} \overline{\operatorname{E^{1}_{0}}{\left (t,R,Z \right )}} & 0\\\frac{e r_{+1;21}}{2} \operatorname{E^{1}_{0}}{\left (t,R,Z \right )} & \hbar \left(\omega_{2} - \varpi_{1} + \frac{\partial}{\partial t} \theta_{1}{\left (t,Z \right )}\right) & \frac{e r_{-1;32}}{2} \overline{\operatorname{E^{2}_{0}}{\left (t,R,Z \right )}}\\0 & \frac{e r_{-1;32}}{2} \operatorname{E^{2}_{0}}{\left (t,R,Z \right )} & \hbar \left(\omega_{3} - \varpi_{1} - \varpi_{2} + \frac{\partial}{\partial t} \theta_{1}{\left (t,Z \right )}\right)\end{matrix}\right]$$

We can see that it is convenient to choose $\theta_1=-\omega_1$ to simplify the hamiltonian. Also, we can recognize $\omega^1-\omega_2+\omega_1=\delta^1$ as the detuning of the first field relative to the atomic transition $\omega_{21}=\omega_2-\omega_1$, and the same for $\omega^2-\omega_3+\omega_2=\delta^2$. And choosing $\theta_1=\omega_1 t$


In [55]:
delta1,delta2=symbols("delta1 delta2",real=True)
Htilde=Htilde.subs({phase[0]:-omega_level[0]*t}).doit()
Htilde=Htilde.subs({omega_laser[0]:delta1+omega_level[1]-omega_level[0]})
Htilde=Htilde.subs({omega_laser[1]:delta2+omega_level[2]-omega_level[1]})

Htilde=Htilde.expand()

fprint(Htilde, print_ascii=print_ascii)


Out[55]:
$$\left[\begin{matrix}0 & \frac{e r_{+1;21}}{2} \overline{\operatorname{E^{1}_{0}}{\left (t,R,Z \right )}} & 0\\\frac{e r_{+1;21}}{2} \operatorname{E^{1}_{0}}{\left (t,R,Z \right )} & - \delta_{1} \hbar & \frac{e r_{-1;32}}{2} \overline{\operatorname{E^{2}_{0}}{\left (t,R,Z \right )}}\\0 & \frac{e r_{-1;32}}{2} \operatorname{E^{2}_{0}}{\left (t,R,Z \right )} & - \delta_{1} \hbar - \delta_{2} \hbar\end{matrix}\right]$$

If we define the Rabi frequencies $\Omega_1 =e E_0^1 r_{0;21}/\hbar$ and $\Omega_2 =e E_0^2 r_{0;32}/\hbar$


In [56]:
Omega1,Omega2=symbols("Omega1 Omega2",real=True)
Omega1,Omega2=symbols("Omega1 Omega2")
Omega1=Function("Omega1")(t,R,Z)
Omega2=Function("Omega2")(t,R,Z)

Htilde=Htilde.subs({E0[0]:Omega1*hbar/r[2][1,0]/e})
Htilde=Htilde.subs({E0[1]:Omega2*hbar/r[0][2,1]/e})

fprint(Htilde, print_ascii=print_ascii)


Out[56]:
$$\left[\begin{matrix}0 & \frac{\hbar}{2} \overline{\Omega_{1}{\left (t,R,Z \right )}} & 0\\\frac{\hbar}{2} \Omega_{1}{\left (t,R,Z \right )} & - \delta_{1} \hbar & \frac{\hbar}{2} \overline{\Omega_{2}{\left (t,R,Z \right )}}\\0 & \frac{\hbar}{2} \Omega_{2}{\left (t,R,Z \right )} & - \delta_{1} \hbar - \delta_{2} \hbar\end{matrix}\right]$$

Optical Bloch Equations

We define the density matrix.


In [57]:
rho=define_density_matrix(Ne, variables=[t, Z])
fprint( rho , print_ascii=print_ascii)


Out[57]:
$$\left[\begin{matrix}\rho_{11}{\left (t,Z \right )} & \rho_{12}{\left (t,Z \right )} & \rho_{13}{\left (t,Z \right )}\\\rho_{21}{\left (t,Z \right )} & \rho_{22}{\left (t,Z \right )} & \rho_{23}{\left (t,Z \right )}\\\rho_{31}{\left (t,Z \right )} & \rho_{32}{\left (t,Z \right )} & \rho_{33}{\left (t,Z \right )}\end{matrix}\right]$$

The hamiltonian part of the equations is \begin{equation} \dot{\hat{\rho}}=\frac{i}{\hbar}[\hat{\rho}, \hat{\tilde{H}}] \end{equation}


In [58]:
hamiltonian_terms=(I/hbar*(rho*Htilde-Htilde*rho)).expand()
fprint(hamiltonian_terms, print_ascii=print_ascii)


Out[58]:
$$\left[\begin{matrix}\frac{i}{2} \Omega_{1}{\left (t,R,Z \right )} \rho_{12}{\left (t,Z \right )} - \frac{i}{2} \rho_{21}{\left (t,Z \right )} \overline{\Omega_{1}{\left (t,R,Z \right )}} & - i \delta_{1} \rho_{12}{\left (t,Z \right )} + \frac{i}{2} \Omega_{2}{\left (t,R,Z \right )} \rho_{13}{\left (t,Z \right )} + \frac{i}{2} \rho_{11}{\left (t,Z \right )} \overline{\Omega_{1}{\left (t,R,Z \right )}} - \frac{i}{2} \rho_{22}{\left (t,Z \right )} \overline{\Omega_{1}{\left (t,R,Z \right )}} & - i \delta_{1} \rho_{13}{\left (t,Z \right )} - i \delta_{2} \rho_{13}{\left (t,Z \right )} + \frac{i}{2} \rho_{12}{\left (t,Z \right )} \overline{\Omega_{2}{\left (t,R,Z \right )}} - \frac{i}{2} \rho_{23}{\left (t,Z \right )} \overline{\Omega_{1}{\left (t,R,Z \right )}}\\i \delta_{1} \rho_{21}{\left (t,Z \right )} - \frac{i}{2} \Omega_{1}{\left (t,R,Z \right )} \rho_{11}{\left (t,Z \right )} + \frac{i}{2} \Omega_{1}{\left (t,R,Z \right )} \rho_{22}{\left (t,Z \right )} - \frac{i}{2} \rho_{31}{\left (t,Z \right )} \overline{\Omega_{2}{\left (t,R,Z \right )}} & - \frac{i}{2} \Omega_{1}{\left (t,R,Z \right )} \rho_{12}{\left (t,Z \right )} + \frac{i}{2} \Omega_{2}{\left (t,R,Z \right )} \rho_{23}{\left (t,Z \right )} + \frac{i}{2} \rho_{21}{\left (t,Z \right )} \overline{\Omega_{1}{\left (t,R,Z \right )}} - \frac{i}{2} \rho_{32}{\left (t,Z \right )} \overline{\Omega_{2}{\left (t,R,Z \right )}} & - i \delta_{2} \rho_{23}{\left (t,Z \right )} - \frac{i}{2} \Omega_{1}{\left (t,R,Z \right )} \rho_{13}{\left (t,Z \right )} + \frac{i}{2} \rho_{22}{\left (t,Z \right )} \overline{\Omega_{2}{\left (t,R,Z \right )}} - \frac{i}{2} \rho_{33}{\left (t,Z \right )} \overline{\Omega_{2}{\left (t,R,Z \right )}}\\i \delta_{1} \rho_{31}{\left (t,Z \right )} + i \delta_{2} \rho_{31}{\left (t,Z \right )} + \frac{i}{2} \Omega_{1}{\left (t,R,Z \right )} \rho_{32}{\left (t,Z \right )} - \frac{i}{2} \Omega_{2}{\left (t,R,Z \right )} \rho_{21}{\left (t,Z \right )} & i \delta_{2} \rho_{32}{\left (t,Z \right )} - \frac{i}{2} \Omega_{2}{\left (t,R,Z \right )} \rho_{22}{\left (t,Z \right )} + \frac{i}{2} \Omega_{2}{\left (t,R,Z \right )} \rho_{33}{\left (t,Z \right )} + \frac{i}{2} \rho_{31}{\left (t,Z \right )} \overline{\Omega_{1}{\left (t,R,Z \right )}} & - \frac{i}{2} \Omega_{2}{\left (t,R,Z \right )} \rho_{23}{\left (t,Z \right )} + \frac{i}{2} \rho_{32}{\left (t,Z \right )} \overline{\Omega_{2}{\left (t,R,Z \right )}}\end{matrix}\right]$$

There are two Lindblad operators, since there are two spontaneous decay channels.


In [59]:
lindblad_terms =gamma[1,0]*lindblad_operator(ket(1,Ne)*bra(2,Ne),rho)
lindblad_terms+=gamma[2,1]*lindblad_operator(ket(2,Ne)*bra(3,Ne),rho)

fprint(lindblad_terms, print_ascii=print_ascii)


Out[59]:
$$\left[\begin{matrix}\gamma_{21} \rho_{22}{\left (t,Z \right )} & - \frac{\gamma_{21}}{2} \rho_{12}{\left (t,Z \right )} & - \frac{\gamma_{32}}{2} \rho_{13}{\left (t,Z \right )}\\- \frac{\gamma_{21}}{2} \rho_{21}{\left (t,Z \right )} & - \gamma_{21} \rho_{22}{\left (t,Z \right )} + \gamma_{32} \rho_{33}{\left (t,Z \right )} & - \frac{\gamma_{21}}{2} \rho_{23}{\left (t,Z \right )} - \frac{\gamma_{32}}{2} \rho_{23}{\left (t,Z \right )}\\- \frac{\gamma_{32}}{2} \rho_{31}{\left (t,Z \right )} & - \frac{\gamma_{21}}{2} \rho_{32}{\left (t,Z \right )} - \frac{\gamma_{32}}{2} \rho_{32}{\left (t,Z \right )} & - \gamma_{32} \rho_{33}{\left (t,Z \right )}\end{matrix}\right]$$

The Optical Bloch equations are thus.


In [60]:
eqs=hamiltonian_terms + lindblad_terms

In [61]:
eqsign=symbols("=")
eqs_list=[]
for mu in range(0,Ne**2-1 -(Ne**2 - Ne)/2+1):
    ii,jj,s=IJ(mu,Ne)
    i=ii-1; j=jj-1
    eqs_list+=[[Derivative(rho[i,j],t),eqsign,eqs[i,j]]]
eqs_list=Matrix(eqs_list)
fprint(eqs_list, print_ascii=print_ascii)


Out[61]:
$$\left[\begin{matrix}\frac{\partial}{\partial t} \rho_{11}{\left (t,Z \right )} & = & \gamma_{21} \rho_{22}{\left (t,Z \right )} + \frac{i}{2} \Omega_{1}{\left (t,R,Z \right )} \rho_{12}{\left (t,Z \right )} - \frac{i}{2} \rho_{21}{\left (t,Z \right )} \overline{\Omega_{1}{\left (t,R,Z \right )}}\\\frac{\partial}{\partial t} \rho_{22}{\left (t,Z \right )} & = & - \gamma_{21} \rho_{22}{\left (t,Z \right )} + \gamma_{32} \rho_{33}{\left (t,Z \right )} - \frac{i}{2} \Omega_{1}{\left (t,R,Z \right )} \rho_{12}{\left (t,Z \right )} + \frac{i}{2} \Omega_{2}{\left (t,R,Z \right )} \rho_{23}{\left (t,Z \right )} + \frac{i}{2} \rho_{21}{\left (t,Z \right )} \overline{\Omega_{1}{\left (t,R,Z \right )}} - \frac{i}{2} \rho_{32}{\left (t,Z \right )} \overline{\Omega_{2}{\left (t,R,Z \right )}}\\\frac{\partial}{\partial t} \rho_{33}{\left (t,Z \right )} & = & - \gamma_{32} \rho_{33}{\left (t,Z \right )} - \frac{i}{2} \Omega_{2}{\left (t,R,Z \right )} \rho_{23}{\left (t,Z \right )} + \frac{i}{2} \rho_{32}{\left (t,Z \right )} \overline{\Omega_{2}{\left (t,R,Z \right )}}\\\frac{\partial}{\partial t} \rho_{21}{\left (t,Z \right )} & = & i \delta_{1} \rho_{21}{\left (t,Z \right )} - \frac{\gamma_{21}}{2} \rho_{21}{\left (t,Z \right )} - \frac{i}{2} \Omega_{1}{\left (t,R,Z \right )} \rho_{11}{\left (t,Z \right )} + \frac{i}{2} \Omega_{1}{\left (t,R,Z \right )} \rho_{22}{\left (t,Z \right )} - \frac{i}{2} \rho_{31}{\left (t,Z \right )} \overline{\Omega_{2}{\left (t,R,Z \right )}}\\\frac{\partial}{\partial t} \rho_{31}{\left (t,Z \right )} & = & i \delta_{1} \rho_{31}{\left (t,Z \right )} + i \delta_{2} \rho_{31}{\left (t,Z \right )} - \frac{\gamma_{32}}{2} \rho_{31}{\left (t,Z \right )} + \frac{i}{2} \Omega_{1}{\left (t,R,Z \right )} \rho_{32}{\left (t,Z \right )} - \frac{i}{2} \Omega_{2}{\left (t,R,Z \right )} \rho_{21}{\left (t,Z \right )}\\\frac{\partial}{\partial t} \rho_{32}{\left (t,Z \right )} & = & i \delta_{2} \rho_{32}{\left (t,Z \right )} - \frac{\gamma_{21}}{2} \rho_{32}{\left (t,Z \right )} - \frac{\gamma_{32}}{2} \rho_{32}{\left (t,Z \right )} - \frac{i}{2} \Omega_{2}{\left (t,R,Z \right )} \rho_{22}{\left (t,Z \right )} + \frac{i}{2} \Omega_{2}{\left (t,R,Z \right )} \rho_{33}{\left (t,Z \right )} + \frac{i}{2} \rho_{31}{\left (t,Z \right )} \overline{\Omega_{1}{\left (t,R,Z \right )}}\end{matrix}\right]$$

Wave equation

From Maxwell's equations in a dielectric medium it can be shown that in the abscence of bound charges, and magnetization currents, the electric field and the polazation of the medium follow the inhomogeneous wave equation.

\begin{equation} \nabla^2 \vec{E} - \frac{1}{c^2} \partial^2_t \vec{E}= \mu_0 \partial_t^2 \vec{P} \end{equation}

We have also taken our fields to be of the form

\begin{equation} \vec{E}(t,\vec{R})=\vec{E}^{+}+\vec{E}^{-}=\frac{1}{2} \sum_l \vec{E}^{l(+)}(t,\vec{R}) e^{i(\vec{k}^l \cdot \vec{R} -\omega^l t)} +c.c. \end{equation}

The $(+)$ part of the field is explicitly


In [62]:
E_cartesian_p


Out[62]:
$$\left [ \left[\begin{matrix}- \frac{\sqrt{2}}{4} \operatorname{E^{1}_{0}}{\left (t,R,Z \right )} e^{- i \varpi_{1} \left(- \frac{Z}{c} + t\right)}\\- \frac{\sqrt{2} i}{4} \operatorname{E^{1}_{0}}{\left (t,R,Z \right )} e^{- i \varpi_{1} \left(- \frac{Z}{c} + t\right)}\\0\end{matrix}\right], \quad \left[\begin{matrix}\frac{\sqrt{2}}{4} \operatorname{E^{2}_{0}}{\left (t,R,Z \right )} e^{- i \varpi_{2} \left(\frac{Z}{c} + t\right)}\\- \frac{\sqrt{2} i}{4} \operatorname{E^{2}_{0}}{\left (t,R,Z \right )} e^{- i \varpi_{2} \left(\frac{Z}{c} + t\right)}\\0\end{matrix}\right]\right ]$$

introducing this into the wave equation we get


In [63]:
def laplacian_cylindric(scalar,coords,full=False):
    R,Phi,Z=coords
    return Derivative(scalar,Z,2).doit()

def laplacian_vec_cylindric(vector,coords,full=False):
    return Matrix([ laplacian_cylindric(vi,coords,full=full) for vi in vector])

In [64]:
E_cartesian_p_tot=sum([E_cartesian_p[l] for l in range(Nl)], zero_vect)
E_cartesian_p_tot


Out[64]:
$$\left[\begin{matrix}- \frac{\sqrt{2}}{4} \operatorname{E^{1}_{0}}{\left (t,R,Z \right )} e^{- i \varpi_{1} \left(- \frac{Z}{c} + t\right)} + \frac{\sqrt{2}}{4} \operatorname{E^{2}_{0}}{\left (t,R,Z \right )} e^{- i \varpi_{2} \left(\frac{Z}{c} + t\right)}\\- \frac{\sqrt{2} i}{4} \operatorname{E^{1}_{0}}{\left (t,R,Z \right )} e^{- i \varpi_{1} \left(- \frac{Z}{c} + t\right)} - \frac{\sqrt{2} i}{4} \operatorname{E^{2}_{0}}{\left (t,R,Z \right )} e^{- i \varpi_{2} \left(\frac{Z}{c} + t\right)}\\0\end{matrix}\right]$$

In [65]:
term1=laplacian_vec_cylindric(E_cartesian_p_tot,[R,Phi,Z]) 
term2=-1/c**2*Matrix([Derivative(vi,t,2).doit() for vi in E_cartesian_p_tot])
lhs=term1+term2
#pprint(lhs,num_columns=150)

And if we consider the amplitudes as slowly varying envelopes (both in time and space) we can approximate them as


In [66]:
svea_subs={Derivative(E0[0],Z,2):0,Derivative(E0[1],Z,2):0,
           Derivative(E0[0],t,2):0,Derivative(E0[1],t,2):0}
svea_subs


Out[66]:
$$\left \{ \frac{\partial^{2}}{\partial Z^{2}} \operatorname{E^{1}_{0}}{\left (t,R,Z \right )} : 0, \quad \frac{\partial^{2}}{\partial t^{2}} \operatorname{E^{1}_{0}}{\left (t,R,Z \right )} : 0, \quad \frac{\partial^{2}}{\partial Z^{2}} \operatorname{E^{2}_{0}}{\left (t,R,Z \right )} : 0, \quad \frac{\partial^{2}}{\partial t^{2}} \operatorname{E^{2}_{0}}{\left (t,R,Z \right )} : 0\right \}$$

In [67]:
lhs=lhs.subs(svea_subs)
lhs.simplify()
lhs


Out[67]:
$$\left[\begin{matrix}- \frac{\sqrt{2} i}{2 c^{2}} \left(c \varpi_{1} e^{i \left(\frac{Z \varpi_{1}}{c} + \frac{Z \varpi_{2}}{c} + t \varpi_{2}\right)} \frac{\partial}{\partial Z} \operatorname{E^{1}_{0}}{\left (t,R,Z \right )} + c \varpi_{2} e^{i t \varpi_{1}} \frac{\partial}{\partial Z} \operatorname{E^{2}_{0}}{\left (t,R,Z \right )} + \varpi_{1} e^{i \left(\frac{Z \varpi_{1}}{c} + \frac{Z \varpi_{2}}{c} + t \varpi_{2}\right)} \frac{\partial}{\partial t} \operatorname{E^{1}_{0}}{\left (t,R,Z \right )} - \varpi_{2} e^{i t \varpi_{1}} \frac{\partial}{\partial t} \operatorname{E^{2}_{0}}{\left (t,R,Z \right )}\right) e^{- i \left(\frac{Z \varpi_{2}}{c} + t \varpi_{1} + t \varpi_{2}\right)}\\\frac{\sqrt{2}}{2 c^{2}} \left(c \varpi_{1} e^{i \left(\frac{Z \varpi_{1}}{c} + \frac{Z \varpi_{2}}{c} + t \varpi_{2}\right)} \frac{\partial}{\partial Z} \operatorname{E^{1}_{0}}{\left (t,R,Z \right )} - c \varpi_{2} e^{i t \varpi_{1}} \frac{\partial}{\partial Z} \operatorname{E^{2}_{0}}{\left (t,R,Z \right )} + \varpi_{1} e^{i \left(\frac{Z \varpi_{1}}{c} + \frac{Z \varpi_{2}}{c} + t \varpi_{2}\right)} \frac{\partial}{\partial t} \operatorname{E^{1}_{0}}{\left (t,R,Z \right )} + \varpi_{2} e^{i t \varpi_{1}} \frac{\partial}{\partial t} \operatorname{E^{2}_{0}}{\left (t,R,Z \right )}\right) e^{- i \left(\frac{Z \varpi_{2}}{c} + t \varpi_{1} + t \varpi_{2}\right)}\\0\end{matrix}\right]$$

On the other hand, we may approximate the macroscopic polarization of the atoms as varying only at the frequencies of the electric field components and at the same polarizations:

\begin{equation} \vec{P}=\frac{1}{2}\sum_l \vec{P}^{l(+)} e^{i(\vec{k}^l \cdot \vec{R} -\omega^l t)} +c.c. \end{equation}

In [68]:
P0=[Function("P_0^1")(t,R,Z), Function("P_0^2")(t,R,Z)]
P0


Out[68]:
$$\left [ \operatorname{P^{1}_{0}}{\left (t,R,Z \right )}, \quad \operatorname{P^{2}_{0}}{\left (t,R,Z \right )}\right ]$$

In [69]:
P_cartesian_p=[P0[l]/2            *ep[l]*exp(-I*omega_laser[l]*(t-k[l].dot(RR)/c)) for l in range(Nl)]
P_cartesian_m=[P0[l].conjugate()/2*em[l]*exp(I*omega_laser[l]*(t-k[l].dot(RR)/c)) for l in range(Nl)]

P_cartesian_p_tot=sum(P_cartesian_p, zero_vect)

P_cartesian_p


Out[69]:
$$\left [ \left[\begin{matrix}- \frac{\sqrt{2}}{4} \operatorname{P^{1}_{0}}{\left (t,R,Z \right )} e^{- i \varpi_{1} \left(- \frac{Z}{c} + t\right)}\\- \frac{\sqrt{2} i}{4} \operatorname{P^{1}_{0}}{\left (t,R,Z \right )} e^{- i \varpi_{1} \left(- \frac{Z}{c} + t\right)}\\0\end{matrix}\right], \quad \left[\begin{matrix}\frac{\sqrt{2}}{4} \operatorname{P^{2}_{0}}{\left (t,R,Z \right )} e^{- i \varpi_{2} \left(\frac{Z}{c} + t\right)}\\- \frac{\sqrt{2} i}{4} \operatorname{P^{2}_{0}}{\left (t,R,Z \right )} e^{- i \varpi_{2} \left(\frac{Z}{c} + t\right)}\\0\end{matrix}\right]\right ]$$

The right-hand side of the wave equation


In [70]:
rhs=mu0*Matrix([Derivative(vi,t,2).doit() for vi in P_cartesian_p_tot])
#pprint(rhs)

And in another slowly varying approximation, the terms with $(\omega^1)^2$ are much larger than those with derivatives of the amplitudes.


In [71]:
svea_subs2={Derivative(P0[0],t,1):0, Derivative(P0[1],t,1):0,
            Derivative(P0[0],t,2):0, Derivative(P0[1],t,2):0}
svea_subs2


Out[71]:
$$\left \{ \frac{\partial}{\partial t} \operatorname{P^{1}_{0}}{\left (t,R,Z \right )} : 0, \quad \frac{\partial}{\partial t} \operatorname{P^{2}_{0}}{\left (t,R,Z \right )} : 0, \quad \frac{\partial^{2}}{\partial t^{2}} \operatorname{P^{1}_{0}}{\left (t,R,Z \right )} : 0, \quad \frac{\partial^{2}}{\partial t^{2}} \operatorname{P^{2}_{0}}{\left (t,R,Z \right )} : 0\right \}$$

In [72]:
rhs=rhs.subs(svea_subs2)
#pprint(rhs)

In [73]:
eqs_wave=lhs-rhs
#pprint(eqs_wave)

These are three scalar equations each of which has coupled terms varying at high frequencies $\omega^l$. However, these frequencies can be decoupled if the polarization of the beams are orthogonal (as they are in our case). Taking a dot product with the polarizations we obtain one equation for each frequency component.


In [74]:
fact1=2*c**2*exp(I*omega_laser[0]*(t-Z/c))/(2*I*omega_laser[0])
lhs1=(fact1*ep[0].conjugate().dot(lhs)).expand()
rhs1=(fact1*ep[0].conjugate().dot(rhs)).expand()

lhs1,rhs1


Out[74]:
$$\left ( c \frac{\partial}{\partial Z} \operatorname{E^{1}_{0}}{\left (t,R,Z \right )} + \frac{\partial}{\partial t} \operatorname{E^{1}_{0}}{\left (t,R,Z \right )}, \quad \frac{i \mu_{0}}{2} c^{2} \varpi_{1} \operatorname{P^{1}_{0}}{\left (t,R,Z \right )}\right )$$

In [75]:
fact2=2*c**2*exp(I*omega_laser[1]*(t+Z/c))/(2*I*omega_laser[1])
lhs2=(fact2*ep[1].conjugate().dot(lhs)).expand()
rhs2=(fact2*ep[1].conjugate().dot(rhs)).expand()

lhs2,rhs2


Out[75]:
$$\left ( - c \frac{\partial}{\partial Z} \operatorname{E^{2}_{0}}{\left (t,R,Z \right )} + \frac{\partial}{\partial t} \operatorname{E^{2}_{0}}{\left (t,R,Z \right )}, \quad \frac{i \mu_{0}}{2} c^{2} \varpi_{2} \operatorname{P^{2}_{0}}{\left (t,R,Z \right )}\right )$$

We take the spacial derivatives to the right-hand side. Just because we can.


In [76]:
lhs1=lhs1-c*Derivative(E0[0],Z)
rhs1=rhs1-c*Derivative(E0[0],Z)

lhs2=lhs2+c*Derivative(E0[1],Z)
rhs2=rhs2+c*Derivative(E0[1],Z)

We put these equations in terms of Rabi frequencies.


In [77]:
fact1=e*r[2][1,0]/hbar
lhs1=(fact1*lhs1.subs({E0[0]:Omega1*hbar/r[2][1,0]/e}).doit()).expand()
rhs1=(fact1*rhs1.subs({E0[0]:Omega1*hbar/r[2][1,0]/e}).doit()).expand()

Matrix([lhs1,eqsign,rhs1]).transpose()


Out[77]:
$$\left[\begin{matrix}\frac{\partial}{\partial t} \Omega_{1}{\left (t,R,Z \right )} & = & \frac{i e \mu_{0} r_{+1;21}}{2 \hbar} c^{2} \varpi_{1} \operatorname{P^{1}_{0}}{\left (t,R,Z \right )} - c \frac{\partial}{\partial Z} \Omega_{1}{\left (t,R,Z \right )}\end{matrix}\right]$$

In [78]:
fact2=e*r[0][2,1]/hbar
lhs2=(fact2*lhs2.subs({E0[1]:Omega2*hbar/r[0][2,1]/e}).doit()).expand()
rhs2=(fact2*rhs2.subs({E0[1]:Omega2*hbar/r[0][2,1]/e}).doit()).expand()

Matrix([lhs2,eqsign,rhs2]).transpose()


Out[78]:
$$\left[\begin{matrix}\frac{\partial}{\partial t} \Omega_{2}{\left (t,R,Z \right )} & = & \frac{i e \mu_{0} r_{-1;32}}{2 \hbar} c^{2} \varpi_{2} \operatorname{P^{2}_{0}}{\left (t,R,Z \right )} + c \frac{\partial}{\partial Z} \Omega_{2}{\left (t,R,Z \right )}\end{matrix}\right]$$

We may relate the macroscopic polarization to the density matrix if we identify the quantum mechanics operator that corresponds to the polarization. Since the polarization is nothing but the density of dipole moment, we can see that

\begin{equation} \vec{P}=-n \mathrm{Tr}(e \vec{\hat{r}} \hat{\rho}) \end{equation}

notice that the minus sign comes from the fact that $\vec{\hat{r}}$ points in the direction of the electron relative to the proton, while the electric dipole moment points in the opposite direction. If we further make the asumption that each frequency component $l$ of the polarization is only driven by the transition $|i\rangle \leftrightarrow |j\rangle$ if $l\in L_{ij}$, then we may decompose $\vec{\hat{r}}$ into $l$ components as.

\begin{equation} \vec{\hat{r}} = \sum_l \vec{\hat{r}}^{l(+)} + \vec{\hat{r}}^{l(+)} \end{equation}

Explicitly:


In [79]:
r_p_component=[ [ Matrix([ [ r_p[p][i,j] if l+1 in Lij[i][j] else 0
                            for j in range(Ne)  ] for i in range(Ne)])
                 for p in range(3)] for l in range(Nl)]

r_m_component=[ [ Matrix([ [ r_m[p][i,j] if l+1 in Lij[i][j] else 0
                            for j in range(Ne)  ] for i in range(Ne)])
                 for p in range(3)] for l in range(Nl)]

In [80]:
rpl1=r_p_component[0]
rpl2=r_p_component[1]

In [81]:
n=Function("n")(R,Z)
n


Out[81]:
$$n{\left (R,Z \right )}$$

In [82]:
vh=Matrix(symbols("r_-,r0,r_+",real=True))
vh,helicity_to_cartesian(vh)


Out[82]:
$$\left ( \left[\begin{matrix}r_{-}\\r_{0}\\r_{+}\end{matrix}\right], \quad \left[\begin{matrix}\frac{\sqrt{2}}{2} \left(- r_{+} + r_{-}\right)\\\frac{\sqrt{2} i}{2} \left(r_{+} + r_{-}\right)\\r_{0}\end{matrix}\right]\right )$$

In [83]:
rpl1_cartesian=[(rpl1[0]-rpl1[2])/sqrt(2),(rpl1[0]+rpl1[2])*I/sqrt(2),rpl1[1]]
rpl1_cartesian


Out[83]:
$$\left [ \left[\begin{matrix}0 & \frac{\sqrt{2}}{2} \left(- r_{+1;21} + r_{-1;21}\right) & 0\\0 & 0 & 0\\0 & 0 & 0\end{matrix}\right], \quad \left[\begin{matrix}0 & \frac{\sqrt{2} i}{2} \left(- r_{+1;21} - r_{-1;21}\right) & 0\\0 & 0 & 0\\0 & 0 & 0\end{matrix}\right], \quad \left[\begin{matrix}0 & r_{0;21} & 0\\0 & 0 & 0\\0 & 0 & 0\end{matrix}\right]\right ]$$

In [84]:
rpl2_cartesian=[(rpl2[0]-rpl2[2])/sqrt(2),(rpl2[0]+rpl2[2])*I/sqrt(2),rpl2[1]]
rpl2_cartesian


Out[84]:
$$\left [ \left[\begin{matrix}0 & 0 & 0\\0 & 0 & \frac{\sqrt{2}}{2} \left(- r_{+1;32} + r_{-1;32}\right)\\0 & 0 & 0\end{matrix}\right], \quad \left[\begin{matrix}0 & 0 & 0\\0 & 0 & \frac{\sqrt{2} i}{2} \left(- r_{+1;32} - r_{-1;32}\right)\\0 & 0 & 0\end{matrix}\right], \quad \left[\begin{matrix}0 & 0 & 0\\0 & 0 & r_{0;32}\\0 & 0 & 0\end{matrix}\right]\right ]$$

The following factor of 2 comes from the fact that $P^{l(+)}/2 = -e n Tr(\vec{\hat{r}}^{l(+)}\hat{\rho})$


In [85]:
Ppl1=-2*n*e*Matrix([ (rpl1_cartesian[i]*rho).trace() for i in range(3)])
Ppl2=-2*n*e*Matrix([ (rpl2_cartesian[i]*rho).trace() for i in range(3)])

Ppl1, Ppl2


Out[85]:
$$\left ( \left[\begin{matrix}- \sqrt{2} e \left(- r_{+1;21} + r_{-1;21}\right) n{\left (R,Z \right )} \rho_{21}{\left (t,Z \right )}\\- \sqrt{2} i e \left(- r_{+1;21} - r_{-1;21}\right) n{\left (R,Z \right )} \rho_{21}{\left (t,Z \right )}\\- 2 e r_{0;21} n{\left (R,Z \right )} \rho_{21}{\left (t,Z \right )}\end{matrix}\right], \quad \left[\begin{matrix}- \sqrt{2} e \left(- r_{+1;32} + r_{-1;32}\right) n{\left (R,Z \right )} \rho_{32}{\left (t,Z \right )}\\- \sqrt{2} i e \left(- r_{+1;32} - r_{-1;32}\right) n{\left (R,Z \right )} \rho_{32}{\left (t,Z \right )}\\- 2 e r_{0;32} n{\left (R,Z \right )} \rho_{32}{\left (t,Z \right )}\end{matrix}\right]\right )$$

Taking the dot product with the polarizations we get the polarization amplitudes in terms of density matrix elements.


In [86]:
Ppl1=ep[0].conjugate().dot(Ppl1).expand()
Ppl2=ep[1].conjugate().dot(Ppl2).expand()

Ppl1, Ppl2


Out[86]:
$$\left ( - 2 e r_{+1;21} n{\left (R,Z \right )} \rho_{21}{\left (t,Z \right )}, \quad - 2 e r_{-1;32} n{\left (R,Z \right )} \rho_{32}{\left (t,Z \right )}\right )$$

In [87]:
rhs1=rhs1.subs({P0[0]:Ppl1})
rhs2=rhs2.subs({P0[1]:Ppl2})

Maxwell-Bloch equations

And we add these equations to the Bloch equations


In [88]:
eqsign=symbols("=")
eqs_list=[]
for mu in range(0,Ne**2-1 -(Ne**2 - Ne)/2+1):
    ii,jj,s=IJ(mu,Ne)
    i=ii-1; j=jj-1
    eqs_list+=[[Derivative(rho[i,j],t),eqsign,eqs[i,j]]]

eqs_list += [[lhs1, eqsign, rhs1]]
eqs_list += [[lhs2, eqsign, rhs2]]

eqs_list=Matrix(eqs_list)
eqs_list=eqs_list.subs({mu0:1/epsilon0/c**2})

fprint(eqs_list, print_ascii=print_ascii)


Out[88]:
$$\left[\begin{matrix}\frac{\partial}{\partial t} \rho_{11}{\left (t,Z \right )} & = & \gamma_{21} \rho_{22}{\left (t,Z \right )} + \frac{i}{2} \Omega_{1}{\left (t,R,Z \right )} \rho_{12}{\left (t,Z \right )} - \frac{i}{2} \rho_{21}{\left (t,Z \right )} \overline{\Omega_{1}{\left (t,R,Z \right )}}\\\frac{\partial}{\partial t} \rho_{22}{\left (t,Z \right )} & = & - \gamma_{21} \rho_{22}{\left (t,Z \right )} + \gamma_{32} \rho_{33}{\left (t,Z \right )} - \frac{i}{2} \Omega_{1}{\left (t,R,Z \right )} \rho_{12}{\left (t,Z \right )} + \frac{i}{2} \Omega_{2}{\left (t,R,Z \right )} \rho_{23}{\left (t,Z \right )} + \frac{i}{2} \rho_{21}{\left (t,Z \right )} \overline{\Omega_{1}{\left (t,R,Z \right )}} - \frac{i}{2} \rho_{32}{\left (t,Z \right )} \overline{\Omega_{2}{\left (t,R,Z \right )}}\\\frac{\partial}{\partial t} \rho_{33}{\left (t,Z \right )} & = & - \gamma_{32} \rho_{33}{\left (t,Z \right )} - \frac{i}{2} \Omega_{2}{\left (t,R,Z \right )} \rho_{23}{\left (t,Z \right )} + \frac{i}{2} \rho_{32}{\left (t,Z \right )} \overline{\Omega_{2}{\left (t,R,Z \right )}}\\\frac{\partial}{\partial t} \rho_{21}{\left (t,Z \right )} & = & i \delta_{1} \rho_{21}{\left (t,Z \right )} - \frac{\gamma_{21}}{2} \rho_{21}{\left (t,Z \right )} - \frac{i}{2} \Omega_{1}{\left (t,R,Z \right )} \rho_{11}{\left (t,Z \right )} + \frac{i}{2} \Omega_{1}{\left (t,R,Z \right )} \rho_{22}{\left (t,Z \right )} - \frac{i}{2} \rho_{31}{\left (t,Z \right )} \overline{\Omega_{2}{\left (t,R,Z \right )}}\\\frac{\partial}{\partial t} \rho_{31}{\left (t,Z \right )} & = & i \delta_{1} \rho_{31}{\left (t,Z \right )} + i \delta_{2} \rho_{31}{\left (t,Z \right )} - \frac{\gamma_{32}}{2} \rho_{31}{\left (t,Z \right )} + \frac{i}{2} \Omega_{1}{\left (t,R,Z \right )} \rho_{32}{\left (t,Z \right )} - \frac{i}{2} \Omega_{2}{\left (t,R,Z \right )} \rho_{21}{\left (t,Z \right )}\\\frac{\partial}{\partial t} \rho_{32}{\left (t,Z \right )} & = & i \delta_{2} \rho_{32}{\left (t,Z \right )} - \frac{\gamma_{21}}{2} \rho_{32}{\left (t,Z \right )} - \frac{\gamma_{32}}{2} \rho_{32}{\left (t,Z \right )} - \frac{i}{2} \Omega_{2}{\left (t,R,Z \right )} \rho_{22}{\left (t,Z \right )} + \frac{i}{2} \Omega_{2}{\left (t,R,Z \right )} \rho_{33}{\left (t,Z \right )} + \frac{i}{2} \rho_{31}{\left (t,Z \right )} \overline{\Omega_{1}{\left (t,R,Z \right )}}\\\frac{\partial}{\partial t} \Omega_{1}{\left (t,R,Z \right )} & = & - c \frac{\partial}{\partial Z} \Omega_{1}{\left (t,R,Z \right )} - \frac{i e^{2} r_{+1;21}^{2} \varpi_{1}}{\hbar \varepsilon_{0}} n{\left (R,Z \right )} \rho_{21}{\left (t,Z \right )}\\\frac{\partial}{\partial t} \Omega_{2}{\left (t,R,Z \right )} & = & c \frac{\partial}{\partial Z} \Omega_{2}{\left (t,R,Z \right )} - \frac{i e^{2} r_{-1;32}^{2} \varpi_{2}}{\hbar \varepsilon_{0}} n{\left (R,Z \right )} \rho_{32}{\left (t,Z \right )}\end{matrix}\right]$$

The Doppler effect

The detunings of the fields however, will be different for different velocity classes in an atomic vapour.


In [89]:
vX, vY, vZ=symbols("v_X, v_Y, v_Z", real=True)
v = Matrix([vX, vY, vZ])
v


Out[89]:
$$\left[\begin{matrix}v_{X}\\v_{Y}\\v_{Z}\end{matrix}\right]$$

For velocities $v \ll c$ the optical frequencies will be

\begin{equation} \varpi_l' = \varpi_l - \vec{k}_l \cdot \vec{v}_l \end{equation}

And so, in our case \begin{equation} \delta_1' = \delta_1 - \varpi_1 v_Z/c, \hspace{1cm} \delta_2' = \delta_2 + \varpi_2 v_Z/c \end{equation}

And the density matrix will be a mixture of contributions from all velocity classes \begin{equation} \rho = \int dv_Z g(v_Z) \rho(v_Z) \end{equation}

So we will rewrite our equations in terms of this new $v_Z$


In [90]:
rhop=define_density_matrix(Ne, variables=[t,Z,vZ])
g=Function("g")(vZ)
g


Out[90]:
$$g{\left (v_{Z} \right )}$$

In [91]:
delta1p=delta1-omega_laser[0]*vZ/c
delta2p=delta2+omega_laser[1]*vZ/c
delta1p,delta2p


Out[91]:
$$\left ( \delta_{1} - \frac{v_{Z} \varpi_{1}}{c}, \quad \delta_{2} + \frac{v_{Z} \varpi_{2}}{c}\right )$$

So our final equations are:


In [92]:
rho_subs={rho[i,j]:rhop[i,j] for i in range(Ne) for j in range(Ne)}
rho_subs

eqs_list = eqs_list.subs({delta1: delta1p, delta2: delta2p})
eqs_list = eqs_list.subs(rho_subs)

eqs_list[6,:] = eqs_list[6,:].subs({rhop[1,0]: Integral(g*rhop[1,0],(vZ,-oo,oo))})
eqs_list[7,:] = eqs_list[7,:].subs({rhop[2,1]: Integral(g*rhop[2,1],(vZ,-oo,oo))})

eqs_list


Out[92]:
$$\left[\begin{matrix}\frac{\partial}{\partial t} \rho_{11}{\left (t,Z,v_{Z} \right )} & = & \gamma_{21} \rho_{22}{\left (t,Z,v_{Z} \right )} + \frac{i}{2} \Omega_{1}{\left (t,R,Z \right )} \rho_{12}{\left (t,Z,v_{Z} \right )} - \frac{i}{2} \rho_{21}{\left (t,Z,v_{Z} \right )} \overline{\Omega_{1}{\left (t,R,Z \right )}}\\\frac{\partial}{\partial t} \rho_{22}{\left (t,Z,v_{Z} \right )} & = & - \gamma_{21} \rho_{22}{\left (t,Z,v_{Z} \right )} + \gamma_{32} \rho_{33}{\left (t,Z,v_{Z} \right )} - \frac{i}{2} \Omega_{1}{\left (t,R,Z \right )} \rho_{12}{\left (t,Z,v_{Z} \right )} + \frac{i}{2} \Omega_{2}{\left (t,R,Z \right )} \rho_{23}{\left (t,Z,v_{Z} \right )} + \frac{i}{2} \rho_{21}{\left (t,Z,v_{Z} \right )} \overline{\Omega_{1}{\left (t,R,Z \right )}} - \frac{i}{2} \rho_{32}{\left (t,Z,v_{Z} \right )} \overline{\Omega_{2}{\left (t,R,Z \right )}}\\\frac{\partial}{\partial t} \rho_{33}{\left (t,Z,v_{Z} \right )} & = & - \gamma_{32} \rho_{33}{\left (t,Z,v_{Z} \right )} - \frac{i}{2} \Omega_{2}{\left (t,R,Z \right )} \rho_{23}{\left (t,Z,v_{Z} \right )} + \frac{i}{2} \rho_{32}{\left (t,Z,v_{Z} \right )} \overline{\Omega_{2}{\left (t,R,Z \right )}}\\\frac{\partial}{\partial t} \rho_{21}{\left (t,Z,v_{Z} \right )} & = & - \frac{\gamma_{21}}{2} \rho_{21}{\left (t,Z,v_{Z} \right )} + i \left(\delta_{1} - \frac{v_{Z} \varpi_{1}}{c}\right) \rho_{21}{\left (t,Z,v_{Z} \right )} - \frac{i}{2} \Omega_{1}{\left (t,R,Z \right )} \rho_{11}{\left (t,Z,v_{Z} \right )} + \frac{i}{2} \Omega_{1}{\left (t,R,Z \right )} \rho_{22}{\left (t,Z,v_{Z} \right )} - \frac{i}{2} \rho_{31}{\left (t,Z,v_{Z} \right )} \overline{\Omega_{2}{\left (t,R,Z \right )}}\\\frac{\partial}{\partial t} \rho_{31}{\left (t,Z,v_{Z} \right )} & = & - \frac{\gamma_{32}}{2} \rho_{31}{\left (t,Z,v_{Z} \right )} + i \left(\delta_{1} - \frac{v_{Z} \varpi_{1}}{c}\right) \rho_{31}{\left (t,Z,v_{Z} \right )} + i \left(\delta_{2} + \frac{v_{Z} \varpi_{2}}{c}\right) \rho_{31}{\left (t,Z,v_{Z} \right )} + \frac{i}{2} \Omega_{1}{\left (t,R,Z \right )} \rho_{32}{\left (t,Z,v_{Z} \right )} - \frac{i}{2} \Omega_{2}{\left (t,R,Z \right )} \rho_{21}{\left (t,Z,v_{Z} \right )}\\\frac{\partial}{\partial t} \rho_{32}{\left (t,Z,v_{Z} \right )} & = & - \frac{\gamma_{21}}{2} \rho_{32}{\left (t,Z,v_{Z} \right )} - \frac{\gamma_{32}}{2} \rho_{32}{\left (t,Z,v_{Z} \right )} + i \left(\delta_{2} + \frac{v_{Z} \varpi_{2}}{c}\right) \rho_{32}{\left (t,Z,v_{Z} \right )} - \frac{i}{2} \Omega_{2}{\left (t,R,Z \right )} \rho_{22}{\left (t,Z,v_{Z} \right )} + \frac{i}{2} \Omega_{2}{\left (t,R,Z \right )} \rho_{33}{\left (t,Z,v_{Z} \right )} + \frac{i}{2} \rho_{31}{\left (t,Z,v_{Z} \right )} \overline{\Omega_{1}{\left (t,R,Z \right )}}\\\frac{\partial}{\partial t} \Omega_{1}{\left (t,R,Z \right )} & = & - c \frac{\partial}{\partial Z} \Omega_{1}{\left (t,R,Z \right )} - \frac{i e^{2} r_{+1;21}^{2} \varpi_{1}}{\hbar \varepsilon_{0}} n{\left (R,Z \right )} \int_{-\infty}^{\infty} g{\left (v_{Z} \right )} \rho_{21}{\left (t,Z,v_{Z} \right )}\, dv_{Z}\\\frac{\partial}{\partial t} \Omega_{2}{\left (t,R,Z \right )} & = & c \frac{\partial}{\partial Z} \Omega_{2}{\left (t,R,Z \right )} - \frac{i e^{2} r_{-1;32}^{2} \varpi_{2}}{\hbar \varepsilon_{0}} n{\left (R,Z \right )} \int_{-\infty}^{\infty} g{\left (v_{Z} \right )} \rho_{32}{\left (t,Z,v_{Z} \right )}\, dv_{Z}\end{matrix}\right]$$

Velocity distribution


In [93]:
m, kB, T = symbols("m, k_B, T", positive=True)
vZ = symbols("v_Z", real=True)
m, kB, T


Out[93]:
$$\left ( m, \quad k_{B}, \quad T\right )$$

In [94]:
sigma_vZ=sqrt(kB*T/m)
g=sqrt(1/(2*pi))/sigma_vZ*exp(-(vZ/sigma_vZ)**2/2)
g


Out[94]:
$$\frac{\sqrt{2} \sqrt{m} e^{- \frac{m v_{Z}^{2}}{2 T k_{B}}}}{2 \sqrt{\pi} \sqrt{T} \sqrt{k_{B}}}$$

In [95]:
from sympy import integrate, oo
integrate(g,(vZ,-oo,oo))


Out[95]:
$$1$$

In [ ]:

[1] H.J. Metcalf and P. van der Straten. Laser Cooling and Trapping. Graduate Texts in Contempo- rary Physics. Springer New York, 2001.

[2] Daniel Adam Steck. Quantum and Atom Optics. Oregon Center for Optics and Department of Physics, University of Oregon Copyright © 200


In [ ]: