In [4]:
#Iimports and aliases each of the library I plan to use
import numpy as np
from pandas import *
import pandas as pd

In [5]:
# Loads the RAW CSV FILE into a DataFrame
df = pd.read_csv("CompensationByState.csv")

In [6]:
# Filters out all rows which have a null value for column IndustryClassification
df = df[pd.notnull(df['IndustryClassification'])]

In [7]:
# Outputs head for sanity check
df.head()


Out[7]:
GeoFIPS GeoName Region Table LineCode IndustryClassification Description 1998 1999 2000 ... 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
0 0 United States SA7N 1/ 50 ... Wages and salaries by place of work (thousands... 4177471000 4456769000 4823765000 ... 5688826000 6051676000 6391231000 6528825000 6244497000 6368897000 6623278000 6920922000 7110424000 7430910000
1 0 United States SA7N 1/ 81 111-112 Farm wages and salaries 15883000 16169000 16970000 ... 19022000 18764000 21140000 21777000 21806000 20753000 19888000 24065000 26687000 27681000
2 0 United States SA7N 1/ 82 ... Nonfarm wages and salaries 4161588000 4440600000 4806795000 ... 5669804000 6032912000 6370091000 6507048000 6222691000 6348144000 6603390000 6896857000 7083737000 7403229000
3 0 United States SA7N 1/ 90 113-814 Private nonfarm wages and salaries 3469473000 3716124000 4036467000 ... 4692227000 5012443000 5295743000 5377831000 5063520000 5174098000 5426885000 5716888000 5894439000 6199925250
4 0 United States SA7N 1/ 100 113-115 Forestry, fishing, and related activities 9080000 9544000 9881000 ... 11627000 12145000 12714000 13152000 12716000 13725000 14120000 15110000 15853000 17292000

5 rows × 24 columns


In [8]:
#"Melts" the data, unpivots all of the "year" columns
survey = pd.melt(df, id_vars=["GeoFIPS", "GeoName", "Region", "Table", "LineCode", "IndustryClassification", "Description"], var_name="Year", value_name="Comepnsation")

In [9]:
survey


Out[9]:
GeoFIPS GeoName Region Table LineCode IndustryClassification Description Year ThousandsOfDollars
0 0 United States SA7N 1/ 50 ... Wages and salaries by place of work (thousands... 1998 4177471000
1 0 United States SA7N 1/ 81 111-112 Farm wages and salaries 1998 15883000
2 0 United States SA7N 1/ 82 ... Nonfarm wages and salaries 1998 4161588000
3 0 United States SA7N 1/ 90 113-814 Private nonfarm wages and salaries 1998 3469473000
4 0 United States SA7N 1/ 100 113-115 Forestry, fishing, and related activities 1998 9080000
5 0 United States SA7N 1/ 101 113 Forestry and logging 1998 2443000
6 0 United States SA7N 1/ 102 114 Fishing, hunting, and trapping 1998 479000
7 0 United States SA7N 1/ 103 115 Agriculture and forestry support activ... 1998 6158000
8 0 United States SA7N 1/ 200 21 Mining 1998 29471000
9 0 United States SA7N 1/ 201 211 Oil and gas extraction 1998 10235000
10 0 United States SA7N 1/ 202 212 Mining (except oil and gas) 1998 11169000
11 0 United States SA7N 1/ 203 213 Support activities for mining 1998 8067000
12 0 United States SA7N 1/ 300 22 Utilities 1998 34812000
13 0 United States SA7N 1/ 400 23 Construction 1998 211283000
14 0 United States SA7N 1/ 401 236 Construction of buildings 1998 52556000
15 0 United States SA7N 1/ 402 237 Heavy and civil engineering construction 1998 34072000
16 0 United States SA7N 1/ 403 238 Specialty trade contractors 1998 124655000
17 0 United States SA7N 1/ 500 31-33 Manufacturing 1998 680377000
18 0 United States SA7N 1/ 510 321,327-339 Durable goods manufacturing 1998 447900000
19 0 United States SA7N 1/ 511 321 Wood product manufacturing 1998 16923000
20 0 United States SA7N 1/ 512 327 Nonmetallic mineral product manufact... 1998 19269000
21 0 United States SA7N 1/ 513 331 Primary metal manufacturing 1998 27230000
22 0 United States SA7N 1/ 514 332 Fabricated metal product manufacturing 1998 61279000
23 0 United States SA7N 1/ 515 333 Machinery manufacturing 1998 62880000
24 0 United States SA7N 1/ 516 334 Computer and electronic product manu... 1998 98735000
25 0 United States SA7N 1/ 517 335 Electrical equipment and appliance m... 1998 21308000
26 0 United States SA7N 1/ 518 3361-3363 Motor vehicles, bodies and trailers,... 1998 57447000
27 0 United States SA7N 1/ 519 3364-3369 Other transportation equipment manuf... 1998 39580000
28 0 United States SA7N 1/ 521 337 Furniture and related product manufa... 1998 17756000
29 0 United States SA7N 1/ 522 339 Miscellaneous manufacturing 1998 25493000
... ... ... ... ... ... ... ... ... ...
116250 98000 Far West 8 SA7N 1/ 1103 533 Lessors of nonfinancial intangible assets 2014 (NA)
116251 98000 Far West 8 SA7N 1/ 1200 54 Professional, scientific, and technical ... 2014 152749569
116252 98000 Far West 8 SA7N 1/ 1300 55 Management of companies and enterprises 2014 39420374
116253 98000 Far West 8 SA7N 1/ 1400 56 Administrative and waste management serv... 2014 56821083
116254 98000 Far West 8 SA7N 1/ 1401 561 Administrative and support services 2014 (NA)
116255 98000 Far West 8 SA7N 1/ 1402 562 Waste management and remediation services 2014 (NA)
116256 98000 Far West 8 SA7N 1/ 1500 61 Educational services 2014 20689169
116257 98000 Far West 8 SA7N 1/ 1600 62 Health care and social assistance 2014 138309335
116258 98000 Far West 8 SA7N 1/ 1601 621 Ambulatory health care services 2014 (NA)
116259 98000 Far West 8 SA7N 1/ 1602 622 Hospitals 2014 (NA)
116260 98000 Far West 8 SA7N 1/ 1603 623 Nursing and residential care facilities 2014 (NA)
116261 98000 Far West 8 SA7N 1/ 1604 624 Social assistance 2014 (NA)
116262 98000 Far West 8 SA7N 1/ 1700 71 Arts, entertainment, and recreation 2014 20076986
116263 98000 Far West 8 SA7N 1/ 1701 711 Performing arts and spectator sports 2014 (NA)
116264 98000 Far West 8 SA7N 1/ 1702 712 Museums, historical sites, zoos, and p... 2014 (NA)
116265 98000 Far West 8 SA7N 1/ 1703 713 Amusement, gambling, and recreation 2014 (NA)
116266 98000 Far West 8 SA7N 1/ 1800 72 Accommodation and food services 2014 58421234
116267 98000 Far West 8 SA7N 1/ 1801 721 Accommodation 2014 (NA)
116268 98000 Far West 8 SA7N 1/ 1802 722 Food services and drinking places 2014 (NA)
116269 98000 Far West 8 SA7N 1/ 1900 81 Other services, except public administra... 2014 39278559
116270 98000 Far West 8 SA7N 1/ 1901 811 Repair and maintenance 2014 (NA)
116271 98000 Far West 8 SA7N 1/ 1902 812 Personal and laundry services 2014 (NA)
116272 98000 Far West 8 SA7N 1/ 1903 813 Membership associations and organizations 2014 (NA)
116273 98000 Far West 8 SA7N 1/ 1904 814 Private households 2014 (NA)
116274 98000 Far West 8 SA7N 1/ 2000 ... Government and government enterprises 2014 228935723
116275 98000 Far West 8 SA7N 1/ 2001 ... Federal, civilian 2014 29856157
116276 98000 Far West 8 SA7N 1/ 2002 ... Military 2014 20801289
116277 98000 Far West 8 SA7N 1/ 2010 ... State and local 2014 178278277
116278 98000 Far West 8 SA7N 1/ 2011 ... State government 2014 (NA)
116279 98000 Far West 8 SA7N 1/ 2012 ... Local government 2014 (NA)

116280 rows × 9 columns


In [10]:
#Outputs that data to a new CSV file
survey.to_csv("MeltedWagesByState.csv")

In [ ]: