In [1]:
# -*- coding: UTF-8 -*-
# Render our plots inline
%matplotlib inline
import pandas as pd
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import seaborn
import shutil
pd.set_option('display.mpl_style', 'default') # Make the graphs a bit prettier, overridden by seaborn
pd.set_option('display.max_columns', None) # Display all the columns
plt.rcParams['font.family'] = 'sans-serif' # Sans Serif fonts for all the graphs
# Reference for color palettes: http://web.stanford.edu/~mwaskom/software/seaborn/tutorial/color_palettes.html
# Change the font
matplotlib.rcParams.update({'font.family': 'Source Sans Pro'})
In [2]:
# Load csv file first
data = pd.read_csv("data/lab-survey.csv", encoding="utf-8")
In [3]:
# Check data
#data[0:4] # Equals to data.head()
In [4]:
1# Range: D11[SQ001] - D10[SQ005] - D11[other]
activity_columns = ["D11[SQ001]","D11[SQ002]","D11[SQ003]","D11[SQ004]","D11[SQ005]"]
activity_options = ['Coworking',
'Botteghe artigiane',
'Studi di progettazione',
'Studi di prototipazione',
'Servizi di produzione']
activity = data[activity_columns]
activity.replace(u'Sì', 'Si', inplace=True) # Get rid of accented characters
activity_other = data['D11[other]'].str.lower().value_counts()
In [5]:
#lab[0:4]
In [6]:
%%capture output
# Save the output as a variable that can be saved to a file
# Gather data
activity_b = {}
for k,i in enumerate(activity_columns):
activity_b[k] = activity[i].value_counts(dropna=False)
print "Data:",activity_options[k]
print activity_b[k]
print
print "Data %:",activity_options[k]
print activity[i].value_counts(normalize=True,dropna=False)*100
print
In [7]:
# Save+show the output to a text file
%save Q011-AttivitáLab01.py str(output)
shutil.move("Q011-AttivitáLab01.py", "text/Q011-AttivitáLab01.txt")
In [8]:
yes = []
no = []
nanvalue = []
for k,i in enumerate(activity_columns):
activity_presents = activity_b[k].index.tolist()
# Convert NaN to "NaN"
for o,h in enumerate(activity_presents):
if type(h) is float:
activity_presents.pop(o)
activity_presents.append("NaN")
# Reassign new list with "NaN"
activity_b[k].index = activity_presents
# Check for empty values, and put a 0 instead
if "Si" not in activity_presents:
yes.append(0)
if "No" not in activity_presents:
no.append(0)
if "NaN" not in activity_presents:
nanvalue.append(0)
for j in activity_presents:
if j == "Si":
yes.append(activity_b[k].ix["Si"])
elif j == "No":
no.append(activity_b[k].ix["No"])
elif j == "NaN":
nanvalue.append(activity_b[k].ix["NaN"])
In [9]:
# Plot the data
plt.figure(figsize=(8,6))
plt.xlabel(u'Attivitá', fontsize=16)
plt.ylabel(u'Lab', fontsize=16)
plt.title(u'Quali altre attività condividono la sede del laboratorio?', fontsize=18, y=1.02)
plt.xticks(range(len(activity_options)),activity_options,rotation=90)
ind = np.arange(len(activity_columns)) # the x locations for the groups
width = 0.25 # the width of the bars
my_colors = seaborn.color_palette("Set1", 3) # Set color palette
rect1 = plt.bar(ind,yes,width,color=my_colors[1],align='center') # Plot Yes
rect2 = plt.bar(ind+width,no,width,color=my_colors[0],align='center') # Plot No
rect3 = plt.bar(ind+width*2,nanvalue,width,color=my_colors[2],align='center') # Plot NaN
plt.legend( (rect1, rect2, rect3), ('Si', 'No', 'Nessuna risposta') )
plt.savefig(u"svg/Q011-AttivitáLab01.svg")
plt.savefig(u"png/Q011-AttivitáLab01.png")
plt.savefig(u"pdf/Q011-AttivitáLab01.pdf")
In [10]:
%%capture output
# Save the output as a variable that can be saved to a file
# Get "other" data
activity_other = data["D11[other]"].str.lower().value_counts()
print "Data:"
print activity_other
print ""
print "Data %:"
print data["D11[other]"].str.lower().value_counts(normalize=True) * 100
In [11]:
# Save+show the output to a text file
%save Q011-AttivitáLab02.py str(output)
shutil.move("Q011-AttivitáLab02.py", "text/Q011-AttivitáLab02.txt")
In [12]:
# Plot bar
plt.figure(figsize=(8,6))
plt.title(u'Quali altre attività condividono la sede del laboratorio? Altro', fontsize=18, y=1.02)
plt.xticks(range(len(activity_other.index)),activity_other.index,rotation=90)
plt.xlabel(u'Attivitá', fontsize=16)
plt.ylabel('Lab', fontsize=16)
ind = np.arange(len(activity_other)) # the x locations for the groups
width = 0.35 # the width of the bars
my_colors = seaborn.color_palette("husl", len(activity_other)) # Set color palette
rect1 = plt.bar(ind,activity_other,width,color=my_colors,align='center')
plt.savefig(u"svg/Q011-AttivitáLab02.svg")
plt.savefig(u"png/Q011-AttivitáLab02.png")
plt.savefig(u"pdf/Q011-AttivitáLab02.pdf")