In [22]:
%matplotlib inline
import eemeter
In [2]:
>>> eemeter.samples()
Out[2]:
In [3]:
>>> meter_data, temperature_data, metadata = \
... eemeter.load_sample('il-electricity-cdd-hdd-daily')
>>> print(meter_data.head())
Out[3]:
In [5]:
>>> data = eemeter.merge_temperature_data(meter_data, temperature_data)
>>> print(data.head())
Out[5]:
In [6]:
>>> data = eemeter.merge_temperature_data(
... meter_data, temperature_data, temperature_mean=False,
... data_quality=True)
>>> print(data.head())
Out[6]:
In [9]:
>>> data = eemeter.merge_temperature_data(
... meter_data, temperature_data, temperature_mean=False,
... heating_balance_points=[60, 61], cooling_balance_points=[70])
>>> print(data.head())
In [17]:
>>> import datetime
>>> import pytz
>>> datetime.datetime(2016, 12, 26, 0, 0, tzinfo=pytz.UTC)
>>> baseline_data, warnings = eemeter.get_baseline_data(
... data, end=baseline_end_date, max_days=365)
>>> print(baseline_data.head())
In [20]:
>>> import json
>>> model_results = eemeter.caltrack_method(data)
>>> print(json.dumps(model_results.json(), indent=2))
In [21]:
>>> model_results.r_squared
Out[21]:
In [24]:
model_results.plot()
Out[24]:
In [18]:
! eemeter caltrack --sample=il-electricity-cdd-only-billing_monthly --output-file=/tmp/out.json
In [25]:
>>> eemeter.plot_energy_signature(meter_data, temperature_data)
Out[25]:
In [26]:
>>> eemeter.plot_time_series(meter_data, temperature_data)
Out[26]:
In [27]:
>>> ax = eemeter.plot_energy_signature(meter_data, temperature_data)
>>> model_results.plot(ax=ax, with_candidates=True)
Out[27]:
In [33]:
>>> model_results.model.plot()
Out[33]:
In [ ]: