In [ ]:
#!pip install seaborn
In [ ]:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns; sns.set()
%matplotlib inline
In [ ]:
In [ ]:
filename= "../data/kobe/kobe_bryant_shot_data.csv.gz"
df = pd.read_csv(filename, na_values={'shot_made_flag': ''})
In [ ]:
df.head()
In [ ]:
df.columns
In [ ]:
In [ ]:
df.shot_made_flag.value_counts(dropna=False)
In [ ]:
df = df.dropna()
In [ ]:
In [ ]:
df['team_name'].head()
In [ ]:
df['team_name'].unique()
In [ ]:
In [ ]:
df['combined_shot_type'].head()
In [ ]:
df['combined_shot_type'].value_counts()
In [ ]:
df['combined_shot_type'].value_counts().plot(kind='bar', figsize=(8, 4), rot=0)
In [ ]:
In [ ]:
df.plot(kind='scatter', x='loc_x', y='loc_y', color='blue', alpha=0.02, figsize=(5,10))
In [ ]:
In [ ]:
ranges = df.shot_zone_range.unique()
cmap = {range_name:color for range_name, color in zip(ranges, sns.color_palette(n_colors=len(ranges)))}
df.plot(kind='scatter', x='loc_x', y='loc_y', alpha=0.03, figsize=(5,10),
c=df.shot_zone_range.map(cmap))
In [ ]:
In [ ]:
zones = df.shot_zone_area.unique()
cmap = {zone_name:color for zone_name, color in zip(zones, sns.color_palette(n_colors=len(zones)))}
df.plot(kind='scatter', x='loc_x', y='loc_y', alpha=0.03, figsize=(5,10),
c=df.shot_zone_area.map(cmap))
In [ ]:
In [ ]: