In [1]:
# coding: UTF-8
%matplotlib inline
import itertools
import numpy as np
import matchfuncs as mf
In [2]:
prop_num = 345
resp_num = 38
alpha = 0.5
beta = 1
prop_caps = [1 for i in range(230)] + [2 for i in range(115)]
resp_caps = [12 for i in range(25)] + [6 for i in range(13)]
list_length = 2
In [3]:
bos_data = np.zeros(7)
daadd_data = np.zeros(7)
da_data = np.zeros(7)
In [4]:
t = 10000
for i in range(t):
prop_prefs, resp_prefs, popularity, grade = mf.MakeCVprefs(prop_num, resp_num, alpha, beta)
bos_data += np.asarray(mf.Comp('BOS', prop_prefs, prop_prefs, resp_prefs, resp_caps, prop_caps, list_length))
daadd_data += np.asarray(mf.Comp('DAAdd', prop_prefs, prop_prefs, resp_prefs, resp_caps, prop_caps, list_length))
da_data += np.asarray(mf.Comp('DA', prop_prefs, prop_prefs, resp_prefs, resp_caps, prop_caps))
bos_data /= t
daadd_data /= t
da_data /= t
In [5]:
print(bos_data)
print(daadd_data)
print(da_data)
| 制度1 | 制度2 | 制度3 | |
|---|---|---|---|
| 安定性 | 240.35 | 216.06 | 0 |
| 耐戦略性 | 345 | 345 | 345 |
| 効率性(生徒) | 4.29 | 2.72 | 9.24 |
| 効率性(ゼミ) | 121.36 | 110.34 | 127.81 |
| 衡平性(生徒) | 116.81 | 152.62 | 60.84 |
| 衡平性(ゼミ) | 106.42 | 153.04 | 0 |
| 実現可能性 | 825.73 | 934.62 | 13110 |