OLS Regression Results
==============================================================================
Dep. Variable: Y R-squared: 0.889
Model: OLS Adj. R-squared: 0.834
Method: Least Squares F-statistic: 16.10
Date: Sun, 19 Jul 2015 Prob (F-statistic): 0.0569
Time: 04:03:05 Log-Likelihood: -4.4896
No. Observations: 4 AIC: 12.98
Df Residuals: 2 BIC: 11.75
Df Model: 1
Covariance Type: nonrobust
==============================================================================
coef std err t P>|t| [95.0% Conf. Int.]
------------------------------------------------------------------------------
const 3.2632 0.861 3.789 0.063 -0.442 6.969
X 0.6842 0.171 4.012 0.057 -0.050 1.418
==============================================================================
Omnibus: nan Durbin-Watson: 1.877
Prob(Omnibus): nan Jarque-Bera (JB): 0.370
Skew: 0.076 Prob(JB): 0.831
Kurtosis: 1.519 Cond. No. 8.48
==============================================================================
Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.