In [1]:
import pandas as pd
import numpy as np
import solution
In [2]:
df = solution.get_train_df()
In [3]:
import matplotlib.pyplot as plt
%matplotlib inline
In [4]:
df.sort_values('charge_time').plot(
x='charge_time', y='charge_last', ylim=[0, 9])
Out[4]:
In [5]:
predict = solution.predictor(df)
predicted = {v: predict(v) for v in np.arange(0.1, 10.0, 0.15)}
dfp = pd.DataFrame(predicted.items(), columns=['charge_time', 'charge_last'])
In [6]:
dfp.sort_values('charge_time').plot(
x='charge_time', y='charge_last', ylim=[0, 9])
Out[6]: