In [ ]:
import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline
In [ ]:
from sklearn.datasets import load_digits
from sklearn.ensemble import RandomForestClassifier
from sklearn.learning_curve import validation_curve
In [ ]:
digits = load_digits()
X, y = digits.data, digits.target
In [ ]:
training_scores, validation_scores = validation_curve(RandomForestClassifier(n_estimators=50, n_jobs=-1), X, y,
param_name="max_depth", param_range=range(1, 10), cv=5)
In [ ]:
training_scores.shape
In [ ]:
def plot_validation_curve(parameter_values, train_scores, validation_scores):
train_scores_mean = np.mean(train_scores, axis=1)
train_scores_std = np.std(train_scores, axis=1)
validation_scores_mean = np.mean(validation_scores, axis=1)
validation_scores_std = np.std(validation_scores, axis=1)
plt.fill_between(parameter_values, train_scores_mean - train_scores_std,
train_scores_mean + train_scores_std, alpha=0.1,
color="r")
plt.fill_between(parameter_values, validation_scores_mean - validation_scores_std,
validation_scores_mean + validation_scores_std, alpha=0.1, color="g")
plt.plot(parameter_values, train_scores_mean, 'o-', color="r",
label="Training score")
plt.plot(parameter_values, validation_scores_mean, 'o-', color="g",
label="Cross-validation score")
plt.ylim(validation_scores_mean.min() - .1, train_scores_mean.max() + .1)
plt.legend(loc="best")
In [ ]:
plot_validation_curve(range(1, 10), training_scores, validation_scores)
In [ ]:
from sklearn.svm import LinearSVC
Cs = [0.00001, 0.0001, 0.001, 0.01, 0.1 , 1, 10]
training_scores, test_scores = validation_curve(LinearSVC(), X, y,
param_name="C", param_range=Cs)
In [ ]:
plot_validation_curve(range(7), training_scores, test_scores)
plt.xticks(range(7), Cs);
In [ ]:
In [ ]: