In [1]:
import pandas as pd
In [2]:
# Read stage 2
gr_15 = pd.read_csv('grant_15.csv')
gr_16 = pd.read_csv('grant_16.csv')
In [3]:
# Only use important values and properly name them
gr_15 = gr_15.loc[:, ["BauerID", "Gesamt", "Ökologischer Landbau"]]
gr_16 = gr_16.loc[:, ["BauerID", "Gesamt", "Ökologischer Landbau"]]
gr_15.rename(columns={'Gesamt': '2015', "Ökologischer Landbau": 'Öko_2015'}, inplace=True)
gr_16.rename(columns={'Gesamt': '2016', "Ökologischer Landbau": 'Öko_2016'}, inplace=True)
In [4]:
# Debug Information
#print(gr_15.columns.values)
#print(gr_16.columns.values)
In [5]:
# Merge both years and fill NaN
organic = pd.merge(gr_15, gr_16, how='outer', on=['BauerID'])
organic.fillna(0, inplace=True)
In [6]:
# Generate is organic column
organic['Öko'] = organic['Öko_2015'] + organic['Öko_2016']
organic['Öko'] = organic['Öko'].map(lambda a: 1 if a > 0 else 0)
In [7]:
# Print amount of farmers
conv = organic.shape[0]
orga = organic['Öko'].sum()
print(conv)
print(orga)
print(str((orga/conv)*100) + " %")
In [8]:
# Print amount of money
conv_m = organic['2016'].sum()
orga_m = organic['Öko_2016'].sum()
print(conv_m/(10**6))
print(orga_m/(10**6))
print(str((orga_m/conv_m)*100) + " %")
In [9]:
# Save insight
organic.to_csv('insights/organic.csv', encoding='utf-8', index=False)