In [1]:
import ipywidgets as widgets

In [3]:
from ipywidgets import interact, interactive, fixed, interact_manual
import ipywidgets as widgets

In [4]:
def f(x):
    return x

In [5]:
interact(f, x=10);



In [6]:
from IPython.display import display
button = widgets.Button(description="Click Me!")
display(button)

def on_button_clicked(b):
    print("Button clicked.")

button.on_click(on_button_clicked)


Button clicked.
Button clicked.
Button clicked.
Button clicked.
Button clicked.

In [7]:
text = widgets.Text()
display(text)

def handle_submit(sender):
    print(text.value)

text.on_submit(handle_submit)


xyz
sss
zzz

In [55]:
int_range = widgets.IntSlider()
display(int_range)

def on_value_change(change):
    print(change['new'])

int_range.observe(on_value_change, names='value')


1
2
3
4
5
6
7
8
9
10
11
12
13
14

In [71]:
caption = widgets.Label(value='The values of range1 and range2 are synchronized')
range1, range2 = widgets.IntSlider(description='Range 1'),\
                 widgets.IntSlider(description='Range 2')
l = widgets.jslink((range1, 'value'), (range2, 'value'))
display(caption, range1, range2)



In [13]:
caption = widgets.Label(value='Changes in source_range values are reflected in target_range1')
source_range, target_range1 = widgets.IntSlider(description='Source range'),\
                              widgets.IntSlider(description='Target range 1')
dl = widgets.jsdlink((source_range, 'value'), (target_range1, 'value'))
display(caption, source_range, target_range1)



In [14]:
l.unlink()
dl.unlink()

In [56]:
w = widgets.IntSlider()
print(w.value)
display(w)


0

In [67]:
x_widget = widgets.FloatSlider(min=0.0, max=10.0, step=0.05)
y_widget = widgets.FloatSlider(min=0.5, max=10.0, step=0.05, value=5.0)

def update_x_range(*args):
    x_widget.max = 2.0 * y_widget.value
y_widget.observe(update_x_range, 'value')

def printer(x, y):
    print(x, y)
widgets.interact(printer,x=x_widget, y=y_widget);



In [68]:
a = widgets.FloatText()
b = widgets.FloatSlider()
display(a,b)

mylink = widgets.jslink((a, 'value'), (b, 'value'))



In [66]:
mylink.unlink()

In [77]:
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.widgets import Slider, Button, RadioButtons
%matplotlib qt
fig, ax = plt.subplots()
plt.subplots_adjust(left=0.25, bottom=0.25)
t = np.arange(0.0, 1.0, 0.001)
a0 = 5
f0 = 3
s = a0*np.sin(2*np.pi*f0*t)
l, = plt.plot(t, s, lw=2, color='red')
plt.axis([0, 1, -10, 10])

axcolor = 'lightgoldenrodyellow'
axfreq = plt.axes([0.25, 0.1, 0.65, 0.03], facecolor=axcolor)
axamp = plt.axes([0.25, 0.15, 0.65, 0.03], facecolor=axcolor)

sfreq = Slider(axfreq, 'Freq', 0.1, 30.0, valinit=f0)
samp = Slider(axamp, 'Amp', 0.1, 10.0, valinit=a0)


def update(val):
    amp = samp.val
    freq = sfreq.val
    l.set_ydata(amp*np.sin(2*np.pi*freq*t))
    fig.canvas.draw_idle()
sfreq.on_changed(update)
samp.on_changed(update)

resetax = plt.axes([0.8, 0.025, 0.1, 0.04])
button = Button(resetax, 'Reset', color=axcolor, hovercolor='0.975')


def reset(event):
    sfreq.reset()
    samp.reset()
button.on_clicked(reset)

rax = plt.axes([0.025, 0.5, 0.15, 0.15], facecolor=axcolor)
radio = RadioButtons(rax, ('red', 'blue', 'green'), active=0)


def colorfunc(label):
    l.set_color(label)
    fig.canvas.draw_idle()
radio.on_clicked(colorfunc)

plt.show()


Warning: Cannot change to a different GUI toolkit: qt. Using osx instead.

In [78]:
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.widgets import RadioButtons

t = np.arange(0.0, 2.0, 0.01)
s0 = np.sin(2*np.pi*t)
s1 = np.sin(4*np.pi*t)
s2 = np.sin(8*np.pi*t)

fig, ax = plt.subplots()
l, = ax.plot(t, s0, lw=2, color='red')
plt.subplots_adjust(left=0.3)

axcolor = 'lightgoldenrodyellow'
rax = plt.axes([0.05, 0.7, 0.15, 0.15], facecolor=axcolor)
radio = RadioButtons(rax, ('2 Hz', '4 Hz', '8 Hz'))


def hzfunc(label):
    hzdict = {'2 Hz': s0, '4 Hz': s1, '8 Hz': s2}
    ydata = hzdict[label]
    l.set_ydata(ydata)
    plt.draw()
radio.on_clicked(hzfunc)

rax = plt.axes([0.05, 0.4, 0.15, 0.15], facecolor=axcolor)
radio2 = RadioButtons(rax, ('red', 'blue', 'green'))


def colorfunc(label):
    l.set_color(label)
    plt.draw()
radio2.on_clicked(colorfunc)

rax = plt.axes([0.05, 0.1, 0.15, 0.15], facecolor=axcolor)
radio3 = RadioButtons(rax, ('-', '--', '-.', 'steps', ':'))


def stylefunc(label):
    l.set_linestyle(label)
    plt.draw()
radio3.on_clicked(stylefunc)

plt.show()

In [79]:
"""
The SpanSelector is a mouse widget to select a xmin/xmax range and plot the
detail view of the selected region in the lower axes
"""
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.widgets import SpanSelector

fig = plt.figure(figsize=(8, 6))
ax = fig.add_subplot(211, facecolor='#FFFFCC')

x = np.arange(0.0, 5.0, 0.01)
y = np.sin(2*np.pi*x) + 0.5*np.random.randn(len(x))

ax.plot(x, y, '-')
ax.set_ylim(-2, 2)
ax.set_title('Press left mouse button and drag to test')

ax2 = fig.add_subplot(212, facecolor='#FFFFCC')
line2, = ax2.plot(x, y, '-')


def onselect(xmin, xmax):
    indmin, indmax = np.searchsorted(x, (xmin, xmax))
    indmax = min(len(x) - 1, indmax)

    thisx = x[indmin:indmax]
    thisy = y[indmin:indmax]
    line2.set_data(thisx, thisy)
    ax2.set_xlim(thisx[0], thisx[-1])
    ax2.set_ylim(thisy.min(), thisy.max())
    fig.canvas.draw()

# set useblit True on gtkagg for enhanced performance
span = SpanSelector(ax, onselect, 'horizontal', useblit=True,
                    rectprops=dict(alpha=0.5, facecolor='red'))


plt.show()

In [80]:
"""
Do a mouseclick somewhere, move the mouse to some destination, release
the button.  This class gives click- and release-events and also draws
a line or a box from the click-point to the actual mouseposition
(within the same axes) until the button is released.  Within the
method 'self.ignore()' it is checked whether the button from eventpress
and eventrelease are the same.

"""
from matplotlib.widgets import RectangleSelector
import numpy as np
import matplotlib.pyplot as plt


def line_select_callback(eclick, erelease):
    'eclick and erelease are the press and release events'
    x1, y1 = eclick.xdata, eclick.ydata
    x2, y2 = erelease.xdata, erelease.ydata
    print("(%3.2f, %3.2f) --> (%3.2f, %3.2f)" % (x1, y1, x2, y2))
    print(" The button you used were: %s %s" % (eclick.button, erelease.button))


def toggle_selector(event):
    print(' Key pressed.')
    if event.key in ['Q', 'q'] and toggle_selector.RS.active:
        print(' RectangleSelector deactivated.')
        toggle_selector.RS.set_active(False)
    if event.key in ['A', 'a'] and not toggle_selector.RS.active:
        print(' RectangleSelector activated.')
        toggle_selector.RS.set_active(True)


fig, current_ax = plt.subplots()                 # make a new plotting range
N = 100000                                       # If N is large one can see
x = np.linspace(0.0, 10.0, N)                    # improvement by use blitting!

plt.plot(x, +np.sin(.2*np.pi*x), lw=3.5, c='b', alpha=.7)  # plot something
plt.plot(x, +np.cos(.2*np.pi*x), lw=3.5, c='r', alpha=.5)
plt.plot(x, -np.sin(.2*np.pi*x), lw=3.5, c='g', alpha=.3)

print("\n      click  -->  release")

# drawtype is 'box' or 'line' or 'none'
toggle_selector.RS = RectangleSelector(current_ax, line_select_callback,
                                       drawtype='box', useblit=True,
                                       button=[1, 3],  # don't use middle button
                                       minspanx=5, minspany=5,
                                       spancoords='pixels',
                                       interactive=True)
plt.connect('key_press_event', toggle_selector)
plt.show()


      click  -->  release
(-0.03, -0.69) --> (4.98, 0.28)
 The button you used were: 1 1
(-0.03, -0.69) --> (6.71, 0.48)
 The button you used were: 1 1
(-0.03, -0.69) --> (6.71, 0.48)
 The button you used were: 1 1
(-0.03, -0.69) --> (6.71, 0.48)
 The button you used were: 1 1

In [81]:
from __future__ import division, print_function
import numpy as np
import matplotlib
import matplotlib.colors as colors
import matplotlib.patches as patches
import matplotlib.mathtext as mathtext
import matplotlib.pyplot as plt
import matplotlib.artist as artist
import matplotlib.image as image


class ItemProperties(object):
    def __init__(self, fontsize=14, labelcolor='black', bgcolor='yellow',
                 alpha=1.0):
        self.fontsize = fontsize
        self.labelcolor = labelcolor
        self.bgcolor = bgcolor
        self.alpha = alpha

        self.labelcolor_rgb = colors.to_rgba(labelcolor)[:3]
        self.bgcolor_rgb = colors.to_rgba(bgcolor)[:3]


class MenuItem(artist.Artist):
    parser = mathtext.MathTextParser("Bitmap")
    padx = 5
    pady = 5

    def __init__(self, fig, labelstr, props=None, hoverprops=None,
                 on_select=None):
        artist.Artist.__init__(self)

        self.set_figure(fig)
        self.labelstr = labelstr

        if props is None:
            props = ItemProperties()

        if hoverprops is None:
            hoverprops = ItemProperties()

        self.props = props
        self.hoverprops = hoverprops

        self.on_select = on_select

        x, self.depth = self.parser.to_mask(
            labelstr, fontsize=props.fontsize, dpi=fig.dpi)

        if props.fontsize != hoverprops.fontsize:
            raise NotImplementedError(
                'support for different font sizes not implemented')

        self.labelwidth = x.shape[1]
        self.labelheight = x.shape[0]

        self.labelArray = np.zeros((x.shape[0], x.shape[1], 4))
        self.labelArray[:, :, -1] = x/255.

        self.label = image.FigureImage(fig, origin='upper')
        self.label.set_array(self.labelArray)

        # we'll update these later
        self.rect = patches.Rectangle((0, 0), 1, 1)

        self.set_hover_props(False)

        fig.canvas.mpl_connect('button_release_event', self.check_select)

    def check_select(self, event):
        over, junk = self.rect.contains(event)
        if not over:
            return

        if self.on_select is not None:
            self.on_select(self)

    def set_extent(self, x, y, w, h):
        print(x, y, w, h)
        self.rect.set_x(x)
        self.rect.set_y(y)
        self.rect.set_width(w)
        self.rect.set_height(h)

        self.label.ox = x + self.padx
        self.label.oy = y - self.depth + self.pady/2.

        self.rect._update_patch_transform()
        self.hover = False

    def draw(self, renderer):
        self.rect.draw(renderer)
        self.label.draw(renderer)

    def set_hover_props(self, b):
        if b:
            props = self.hoverprops
        else:
            props = self.props

        r, g, b = props.labelcolor_rgb
        self.labelArray[:, :, 0] = r
        self.labelArray[:, :, 1] = g
        self.labelArray[:, :, 2] = b
        self.label.set_array(self.labelArray)
        self.rect.set(facecolor=props.bgcolor, alpha=props.alpha)

    def set_hover(self, event):
        'check the hover status of event and return true if status is changed'
        b, junk = self.rect.contains(event)

        changed = (b != self.hover)

        if changed:
            self.set_hover_props(b)

        self.hover = b
        return changed


class Menu(object):
    def __init__(self, fig, menuitems):
        self.figure = fig
        fig.suppressComposite = True

        self.menuitems = menuitems
        self.numitems = len(menuitems)

        maxw = max([item.labelwidth for item in menuitems])
        maxh = max([item.labelheight for item in menuitems])

        totalh = self.numitems*maxh + (self.numitems + 1)*2*MenuItem.pady

        x0 = 100
        y0 = 400

        width = maxw + 2*MenuItem.padx
        height = maxh + MenuItem.pady

        for item in menuitems:
            left = x0
            bottom = y0 - maxh - MenuItem.pady

            item.set_extent(left, bottom, width, height)

            fig.artists.append(item)
            y0 -= maxh + MenuItem.pady

        fig.canvas.mpl_connect('motion_notify_event', self.on_move)

    def on_move(self, event):
        draw = False
        for item in self.menuitems:
            draw = item.set_hover(event)
            if draw:
                self.figure.canvas.draw()
                break


fig = plt.figure()
fig.subplots_adjust(left=0.3)
props = ItemProperties(labelcolor='black', bgcolor='yellow',
                       fontsize=15, alpha=0.2)
hoverprops = ItemProperties(labelcolor='white', bgcolor='blue',
                            fontsize=15, alpha=0.2)

menuitems = []
for label in ('open', 'close', 'save', 'save as', 'quit'):
    def on_select(item):
        print('you selected %s' % item.labelstr)
    item = MenuItem(fig, label, props=props, hoverprops=hoverprops,
                    on_select=on_select)
    menuitems.append(item)

menu = Menu(fig, menuitems)
plt.show()


100 349 168 51
100 298 168 51
100 247 168 51
100 196 168 51
100 145 168 51
you selected open
you selected close
you selected save
you selected save as
you selected quit

In [82]:
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.widgets import MultiCursor

t = np.arange(0.0, 2.0, 0.01)
s1 = np.sin(2*np.pi*t)
s2 = np.sin(4*np.pi*t)
fig = plt.figure()
ax1 = fig.add_subplot(211)
ax1.plot(t, s1)


ax2 = fig.add_subplot(212, sharex=ax1)
ax2.plot(t, s2)

multi = MultiCursor(fig.canvas, (ax1, ax2), color='r', lw=1)
plt.show()

In [83]:
from matplotlib.widgets import Cursor
import numpy as np
import matplotlib.pyplot as plt


fig = plt.figure(figsize=(8, 6))
ax = fig.add_subplot(111, facecolor='#FFFFCC')

x, y = 4*(np.random.rand(2, 100) - .5)
ax.plot(x, y, 'o')
ax.set_xlim(-2, 2)
ax.set_ylim(-2, 2)

# set useblit = True on gtkagg for enhanced performance
cursor = Cursor(ax, useblit=True, color='red', linewidth=2)

plt.show()

In [ ]: