In [3]:
%load_ext autoreload
%autoreload 2
import os
import numpy as np
import pandas as pd
from browser import *
In [4]:
exps = [
'C100_DenseBest_F',
'C100_DenseBest_Linear1_F',
'C100_SparseBest_F',
'C100_SparseBest_Linear1_F',
]
paths = [os.path.expanduser("~/nta/results/{}".format(e)) for e in exps]
df = load_many(paths)
In [5]:
df.shape
Out[5]:
In [32]:
def mean_and_std(s):
return "{:.4f} ± {:.4f}".format(s.mean(), s.std())
(df.groupby(['dataset', 'name'])
.agg({'test_accuracy_max': [mean_and_std],
'mean_accuracy_max': [mean_and_std],
'noise_accuracy_max': [mean_and_std]}))
Out[32]:
In [33]:
(df.groupby(['dataset', 'name'])
.agg({'test_accuracy_max': ['max','mean', 'std'],
'mean_accuracy_max': ['max', 'mean', 'std'],
'noise_accuracy_max': ['max', 'mean', 'std']})
.round(4))
Out[33]:
In [ ]: