('', GSCHeb(
(classifier): Sequential(
(0): Conv2d(1, 64, kernel_size=(5, 5), stride=(1, 1))
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=False, track_running_stats=True)
(2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(3): KWinners2d(channels=64, n=12544, percent_on=0.095, boost_strength=1.5, boost_strength_factor=0.9, k_inference_factor=1.5, duty_cycle_period=1000)
(4): Conv2d(64, 64, kernel_size=(5, 5), stride=(1, 1))
(5): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=False, track_running_stats=True)
(6): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(7): KWinners2d(channels=64, n=1600, percent_on=0.125, boost_strength=1.5, boost_strength_factor=0.9, k_inference_factor=1.5, duty_cycle_period=1000)
(8): Flatten()
(9): Linear(in_features=1600, out_features=1000, bias=True)
(10): BatchNorm1d(1000, eps=1e-05, momentum=0.1, affine=False, track_running_stats=True)
(11): KWinners(n=1000, percent_on=0.1, boost_strength=1.5, boost_strength_factor=0.9, k_inference_factor=1.5, duty_cycle_period=1000)
(12): Linear(in_features=1000, out_features=12, bias=True)
)
(classifier.0): DSConv2d(
1, 64, kernel_size=(5, 5), stride=(1, 1)
(grouped_conv): _NullConv(25, 25, kernel_size=(5, 5), stride=(1, 1), groups=25, bias=False)
)
(classifier.4): DSConv2d(
64, 64, kernel_size=(5, 5), stride=(1, 1)
(grouped_conv): _NullConv(102400, 1600, kernel_size=(5, 5), stride=(1, 1), groups=1600, bias=False)
)
))