In [47]:
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
plt.style.use('bmh')
pd.set_option('display.max_rows', 200)
In [51]:
df = pd.read_csv('timing.txt', sep='\t')
#print(df)
In [55]:
fig = plt.figure(figsize=(16,12))
for ncomm in df['Ncomm'].unique():
for ncells in df['Ncells'].unique():
for npart in df['Nparticles'].unique():
#for npart in [99856]:
mask = np.logical_and(df['Nparticles']==npart, np.logical_and(df['Ncomm']==ncomm, df['Ncells']==ncells))
x = df[mask]['Nranks']
y = df[mask]['Time']
plt.plot(x, y, label='%s %s %s' % (ncomm, ncells, npart))
plt.legend()
plt.yscale('log')
plt.xscale('log')
plt.xlim(1,12)
Out[55]:
In [13]:
for n in df['Ncomm'].unique():
x = df[df['Ncomm']==n]['Nranks']
y = df[df['Ncomm']==n]['Time']
plt.plot(x, y, label=n)
plt.legend()
Out[13]:
In [18]:
dt = 0.006
Ndt = int(1/dt)
tmax = 5
1 + int(tmax / dt / Ndt)
Out[18]:
In [ ]: