In [1]:
%matplotlib inline  
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

In [23]:
df = pd.read_csv('train.csv')
df = df.loc[df['season'].isin([1, 2, 3, 4])]
df.tail()


Out[23]:
datetime season holiday workingday weather temp atemp humidity windspeed casual registered count
10881 2012-12-19 19:00:00 4 0 1 1 15.58 19.695 50 26.0027 7 329 336
10882 2012-12-19 20:00:00 4 0 1 1 14.76 17.425 57 15.0013 10 231 241
10883 2012-12-19 21:00:00 4 0 1 1 13.94 15.910 61 15.0013 4 164 168
10884 2012-12-19 22:00:00 4 0 1 1 13.94 17.425 61 6.0032 12 117 129
10885 2012-12-19 23:00:00 4 0 1 1 13.12 16.665 66 8.9981 4 84 88

In [17]:
df.shape


Out[17]:
(10886, 12)

In [18]:
df = df.cumsum()
plt.figure(); df.plot();


<matplotlib.figure.Figure at 0x1328e7908>

In [21]:
np.unique(df['weather'])


Out[21]:
array([1, 2, 3, ..., 15439, 15440, 15441], dtype=object)

In [24]:
df.plot(kind='scatter', y='count', x='season')


Out[24]:
<matplotlib.axes._subplots.AxesSubplot at 0x108cb76d8>

In [26]:
df.plot(kind='scatter', y='count', x='weather')


Out[26]:
<matplotlib.axes._subplots.AxesSubplot at 0x13328bc88>

In [27]:
df.plot(kind='scatter', y='count', x='temp')


Out[27]:
<matplotlib.axes._subplots.AxesSubplot at 0x1332ab4e0>

In [ ]: