In [1]:
import pandas as pd
import numpy as np

In [683]:
df = pd.DataFrame(np.random.randn(1000,10), columns= ['topic 1', 'topic 2', 'topic 3', 'topic 4', 'topic 5', 'topic 6', 'topic 7', 'topic 8', 'topic 9', 'topic 10'])

In [684]:
df.shape


Out[684]:
(1000, 10)

In [685]:
# make a distribution in every row
def apply_distribution(row):
    s = np.random.exponential(scale=1.0, size=10)
    return pd.Series(s/s.sum())

In [686]:
df = df.apply(apply_distribution, axis=1) # apply the distribution

In [687]:
df['date_sent'] = pd.Series() # add a column for date the email is sent

In [688]:
df


Out[688]:
0 1 2 3 4 5 6 7 8 9 date_sent
0 0.093013 0.022149 0.152614 0.122789 0.171756 0.008851 0.257211 0.011800 0.041068 0.118750 NaN
1 0.085686 0.042914 0.193660 0.052411 0.377262 0.054326 0.103518 0.013129 0.029596 0.047497 NaN
2 0.052673 0.013017 0.187891 0.027889 0.134614 0.109124 0.062208 0.023950 0.020901 0.367733 NaN
3 0.080543 0.241699 0.013637 0.036184 0.010589 0.312160 0.143825 0.005105 0.141908 0.014350 NaN
4 0.075367 0.102129 0.345652 0.095193 0.014923 0.130467 0.039766 0.037884 0.027764 0.130855 NaN
5 0.029140 0.122982 0.183885 0.051679 0.087894 0.198557 0.029177 0.068652 0.194724 0.033311 NaN
6 0.120828 0.080681 0.134731 0.087057 0.078469 0.151554 0.077353 0.145072 0.074153 0.050101 NaN
7 0.234988 0.009897 0.029432 0.028404 0.054993 0.048191 0.349070 0.097725 0.056284 0.091017 NaN
8 0.000614 0.034910 0.002672 0.010680 0.136185 0.043953 0.060662 0.047986 0.317369 0.344967 NaN
9 0.014547 0.058735 0.153404 0.077710 0.002322 0.137340 0.038911 0.014986 0.289575 0.212471 NaN
10 0.008695 0.026700 0.054163 0.387308 0.022092 0.041383 0.221447 0.016484 0.214351 0.007377 NaN
11 0.041390 0.159062 0.054547 0.153180 0.088022 0.080946 0.234152 0.046570 0.125441 0.016689 NaN
12 0.051968 0.035934 0.032615 0.059201 0.166128 0.229201 0.313454 0.046930 0.006893 0.057677 NaN
13 0.051099 0.020306 0.159952 0.059786 0.112925 0.179584 0.040922 0.229889 0.069481 0.076057 NaN
14 0.078620 0.038959 0.055026 0.031491 0.203583 0.132747 0.236623 0.107255 0.082339 0.033358 NaN
15 0.181892 0.228793 0.063566 0.097666 0.067363 0.111606 0.012283 0.070138 0.035407 0.131286 NaN
16 0.085797 0.337739 0.214189 0.113755 0.142805 0.007106 0.006445 0.051139 0.013605 0.027420 NaN
17 0.054453 0.023030 0.018715 0.141864 0.416313 0.000064 0.223425 0.050595 0.009697 0.061843 NaN
18 0.144780 0.072253 0.090191 0.087188 0.098689 0.000098 0.038569 0.321993 0.084521 0.061717 NaN
19 0.118873 0.199206 0.006197 0.070047 0.038159 0.063785 0.168631 0.059917 0.018397 0.256788 NaN
20 0.149439 0.184593 0.157709 0.110559 0.221373 0.068101 0.004920 0.013690 0.047693 0.041923 NaN
21 0.036040 0.054603 0.000063 0.053995 0.116011 0.070401 0.269245 0.158960 0.206584 0.034098 NaN
22 0.044565 0.245600 0.113162 0.021003 0.071046 0.362133 0.020708 0.031813 0.016154 0.073817 NaN
23 0.119449 0.069428 0.003672 0.094421 0.018252 0.234732 0.358718 0.039515 0.012741 0.049072 NaN
24 0.069022 0.028948 0.113062 0.114830 0.104455 0.066402 0.089271 0.061627 0.134000 0.218384 NaN
25 0.013061 0.001281 0.058749 0.263196 0.099328 0.225964 0.021755 0.033043 0.110618 0.173005 NaN
26 0.008506 0.019529 0.101543 0.098604 0.239346 0.003608 0.445534 0.072408 0.003736 0.007185 NaN
27 0.013911 0.191937 0.343870 0.015008 0.039092 0.059851 0.211369 0.074437 0.009818 0.040706 NaN
28 0.105587 0.101039 0.027008 0.128465 0.266995 0.059113 0.025297 0.061519 0.000380 0.224596 NaN
29 0.012471 0.014510 0.068683 0.008481 0.256034 0.045586 0.055363 0.394376 0.045543 0.098953 NaN
... ... ... ... ... ... ... ... ... ... ... ...
970 0.104878 0.189771 0.170740 0.165510 0.007500 0.124253 0.102664 0.033310 0.071928 0.029446 NaN
971 0.010716 0.096125 0.065954 0.068900 0.097438 0.045346 0.094105 0.146061 0.156118 0.219237 NaN
972 0.059508 0.225429 0.160102 0.034499 0.071608 0.003279 0.306367 0.015398 0.070192 0.053618 NaN
973 0.236618 0.088829 0.261178 0.013578 0.288976 0.020972 0.067341 0.005094 0.014801 0.002615 NaN
974 0.092546 0.027781 0.137550 0.050823 0.198944 0.036406 0.040805 0.000247 0.205088 0.209810 NaN
975 0.020758 0.098846 0.183029 0.310018 0.124005 0.007286 0.006040 0.104336 0.140854 0.004829 NaN
976 0.002662 0.178143 0.127200 0.185732 0.153589 0.097458 0.065183 0.051932 0.001569 0.136531 NaN
977 0.101562 0.160400 0.168354 0.008245 0.212808 0.027732 0.178496 0.045559 0.083988 0.012857 NaN
978 0.021030 0.002906 0.024274 0.136584 0.310754 0.159391 0.168610 0.011742 0.156293 0.008417 NaN
979 0.022348 0.172398 0.006543 0.128303 0.062145 0.096896 0.007330 0.205899 0.100726 0.197413 NaN
980 0.018218 0.023606 0.250958 0.001435 0.021875 0.011041 0.079913 0.022351 0.170612 0.399991 NaN
981 0.107563 0.118399 0.192274 0.075835 0.044716 0.083989 0.051816 0.110655 0.200965 0.013788 NaN
982 0.323178 0.012526 0.179570 0.044297 0.066666 0.003718 0.191621 0.017643 0.082578 0.078201 NaN
983 0.013611 0.199819 0.011796 0.158551 0.169127 0.062300 0.010697 0.087363 0.013686 0.273049 NaN
984 0.060021 0.006483 0.090845 0.064929 0.049884 0.011103 0.028937 0.517896 0.073503 0.096398 NaN
985 0.263112 0.017212 0.095081 0.132283 0.037569 0.077197 0.012491 0.133828 0.195391 0.035837 NaN
986 0.083490 0.097345 0.093668 0.056783 0.121588 0.134282 0.139747 0.087321 0.080412 0.105364 NaN
987 0.015644 0.030562 0.097094 0.260417 0.012915 0.026136 0.054619 0.019881 0.041496 0.441235 NaN
988 0.141781 0.087416 0.286679 0.088753 0.008396 0.063025 0.250268 0.062960 0.005094 0.005629 NaN
989 0.377045 0.119088 0.072912 0.034323 0.003338 0.064164 0.114463 0.059107 0.023050 0.132509 NaN
990 0.051661 0.047893 0.057490 0.200066 0.081752 0.154186 0.009546 0.032937 0.176595 0.187873 NaN
991 0.012132 0.227984 0.045219 0.048532 0.072076 0.117802 0.263475 0.144284 0.028966 0.039529 NaN
992 0.353518 0.009456 0.200745 0.039707 0.035467 0.100722 0.008388 0.086243 0.139374 0.026378 NaN
993 0.137577 0.124454 0.009536 0.232614 0.101888 0.075090 0.059695 0.124679 0.004009 0.130457 NaN
994 0.092338 0.029579 0.039457 0.402105 0.106955 0.018004 0.037641 0.009545 0.234853 0.029522 NaN
995 0.147465 0.249481 0.182494 0.029455 0.050113 0.017217 0.049526 0.157240 0.049318 0.067690 NaN
996 0.091999 0.318989 0.088607 0.059343 0.048333 0.287783 0.007916 0.004893 0.066485 0.025651 NaN
997 0.024519 0.273072 0.079934 0.130409 0.004359 0.179298 0.144581 0.024430 0.026700 0.112698 NaN
998 0.052035 0.004493 0.045288 0.118129 0.113495 0.215003 0.267225 0.027923 0.114969 0.041440 NaN
999 0.080285 0.077427 0.028365 0.103227 0.100557 0.146552 0.109205 0.129704 0.153433 0.071244 NaN

1000 rows × 11 columns


In [690]:
df.iloc[0].sum() # sum per row should be 1


Out[690]:
1.0

In [691]:
import datetime
import radar

In [692]:
# random between two dates
def random_date(row):
    return radar.random_date(start = datetime.datetime(year=2000, month=1, day=1),stop = datetime.datetime(year=2002, month=1, day=30))

In [694]:
df['date_sent'] = df.apply(random_date, axis=1) # assign random dates drawn from an intervals

In [695]:
df


Out[695]:
0 1 2 3 4 5 6 7 8 9 date_sent
0 0.093013 0.022149 0.152614 0.122789 0.171756 0.008851 0.257211 0.011800 0.041068 0.118750 2001-02-08 02:11:19
1 0.085686 0.042914 0.193660 0.052411 0.377262 0.054326 0.103518 0.013129 0.029596 0.047497 2000-04-24 03:13:02
2 0.052673 0.013017 0.187891 0.027889 0.134614 0.109124 0.062208 0.023950 0.020901 0.367733 2001-04-05 18:06:51
3 0.080543 0.241699 0.013637 0.036184 0.010589 0.312160 0.143825 0.005105 0.141908 0.014350 2001-12-07 18:49:41
4 0.075367 0.102129 0.345652 0.095193 0.014923 0.130467 0.039766 0.037884 0.027764 0.130855 2001-05-21 16:55:44
5 0.029140 0.122982 0.183885 0.051679 0.087894 0.198557 0.029177 0.068652 0.194724 0.033311 2001-09-04 01:35:07
6 0.120828 0.080681 0.134731 0.087057 0.078469 0.151554 0.077353 0.145072 0.074153 0.050101 2001-01-05 04:02:09
7 0.234988 0.009897 0.029432 0.028404 0.054993 0.048191 0.349070 0.097725 0.056284 0.091017 2001-07-23 08:16:57
8 0.000614 0.034910 0.002672 0.010680 0.136185 0.043953 0.060662 0.047986 0.317369 0.344967 2001-04-05 04:41:15
9 0.014547 0.058735 0.153404 0.077710 0.002322 0.137340 0.038911 0.014986 0.289575 0.212471 2001-07-28 05:39:16
10 0.008695 0.026700 0.054163 0.387308 0.022092 0.041383 0.221447 0.016484 0.214351 0.007377 2000-04-25 09:32:47
11 0.041390 0.159062 0.054547 0.153180 0.088022 0.080946 0.234152 0.046570 0.125441 0.016689 2001-08-15 06:49:17
12 0.051968 0.035934 0.032615 0.059201 0.166128 0.229201 0.313454 0.046930 0.006893 0.057677 2001-09-17 12:16:59
13 0.051099 0.020306 0.159952 0.059786 0.112925 0.179584 0.040922 0.229889 0.069481 0.076057 2000-08-03 18:15:42
14 0.078620 0.038959 0.055026 0.031491 0.203583 0.132747 0.236623 0.107255 0.082339 0.033358 2000-02-13 04:09:58
15 0.181892 0.228793 0.063566 0.097666 0.067363 0.111606 0.012283 0.070138 0.035407 0.131286 2000-04-15 18:31:42
16 0.085797 0.337739 0.214189 0.113755 0.142805 0.007106 0.006445 0.051139 0.013605 0.027420 2001-06-29 11:58:24
17 0.054453 0.023030 0.018715 0.141864 0.416313 0.000064 0.223425 0.050595 0.009697 0.061843 2000-05-08 07:41:02
18 0.144780 0.072253 0.090191 0.087188 0.098689 0.000098 0.038569 0.321993 0.084521 0.061717 2001-05-22 20:07:18
19 0.118873 0.199206 0.006197 0.070047 0.038159 0.063785 0.168631 0.059917 0.018397 0.256788 2000-10-01 08:45:06
20 0.149439 0.184593 0.157709 0.110559 0.221373 0.068101 0.004920 0.013690 0.047693 0.041923 2001-12-23 19:10:42
21 0.036040 0.054603 0.000063 0.053995 0.116011 0.070401 0.269245 0.158960 0.206584 0.034098 2001-08-23 11:25:09
22 0.044565 0.245600 0.113162 0.021003 0.071046 0.362133 0.020708 0.031813 0.016154 0.073817 2001-06-08 15:48:47
23 0.119449 0.069428 0.003672 0.094421 0.018252 0.234732 0.358718 0.039515 0.012741 0.049072 2000-11-02 15:24:09
24 0.069022 0.028948 0.113062 0.114830 0.104455 0.066402 0.089271 0.061627 0.134000 0.218384 2001-06-28 03:59:06
25 0.013061 0.001281 0.058749 0.263196 0.099328 0.225964 0.021755 0.033043 0.110618 0.173005 2001-05-29 03:36:11
26 0.008506 0.019529 0.101543 0.098604 0.239346 0.003608 0.445534 0.072408 0.003736 0.007185 2001-07-30 20:29:29
27 0.013911 0.191937 0.343870 0.015008 0.039092 0.059851 0.211369 0.074437 0.009818 0.040706 2002-01-28 06:53:10
28 0.105587 0.101039 0.027008 0.128465 0.266995 0.059113 0.025297 0.061519 0.000380 0.224596 2001-01-31 00:29:07
29 0.012471 0.014510 0.068683 0.008481 0.256034 0.045586 0.055363 0.394376 0.045543 0.098953 2000-12-23 05:24:25
... ... ... ... ... ... ... ... ... ... ... ...
970 0.104878 0.189771 0.170740 0.165510 0.007500 0.124253 0.102664 0.033310 0.071928 0.029446 2000-09-13 18:08:15
971 0.010716 0.096125 0.065954 0.068900 0.097438 0.045346 0.094105 0.146061 0.156118 0.219237 2001-02-10 10:56:47
972 0.059508 0.225429 0.160102 0.034499 0.071608 0.003279 0.306367 0.015398 0.070192 0.053618 2000-07-21 18:31:22
973 0.236618 0.088829 0.261178 0.013578 0.288976 0.020972 0.067341 0.005094 0.014801 0.002615 2000-01-04 00:21:20
974 0.092546 0.027781 0.137550 0.050823 0.198944 0.036406 0.040805 0.000247 0.205088 0.209810 2000-06-11 00:25:58
975 0.020758 0.098846 0.183029 0.310018 0.124005 0.007286 0.006040 0.104336 0.140854 0.004829 2001-06-16 14:58:11
976 0.002662 0.178143 0.127200 0.185732 0.153589 0.097458 0.065183 0.051932 0.001569 0.136531 2000-04-11 09:47:53
977 0.101562 0.160400 0.168354 0.008245 0.212808 0.027732 0.178496 0.045559 0.083988 0.012857 2000-04-18 05:52:08
978 0.021030 0.002906 0.024274 0.136584 0.310754 0.159391 0.168610 0.011742 0.156293 0.008417 2000-10-25 02:14:54
979 0.022348 0.172398 0.006543 0.128303 0.062145 0.096896 0.007330 0.205899 0.100726 0.197413 2000-05-27 22:22:48
980 0.018218 0.023606 0.250958 0.001435 0.021875 0.011041 0.079913 0.022351 0.170612 0.399991 2000-08-19 13:40:20
981 0.107563 0.118399 0.192274 0.075835 0.044716 0.083989 0.051816 0.110655 0.200965 0.013788 2002-01-01 01:56:51
982 0.323178 0.012526 0.179570 0.044297 0.066666 0.003718 0.191621 0.017643 0.082578 0.078201 2000-06-24 09:42:36
983 0.013611 0.199819 0.011796 0.158551 0.169127 0.062300 0.010697 0.087363 0.013686 0.273049 2000-04-07 00:59:29
984 0.060021 0.006483 0.090845 0.064929 0.049884 0.011103 0.028937 0.517896 0.073503 0.096398 2001-08-09 18:29:44
985 0.263112 0.017212 0.095081 0.132283 0.037569 0.077197 0.012491 0.133828 0.195391 0.035837 2000-05-26 03:11:17
986 0.083490 0.097345 0.093668 0.056783 0.121588 0.134282 0.139747 0.087321 0.080412 0.105364 2001-01-30 20:10:11
987 0.015644 0.030562 0.097094 0.260417 0.012915 0.026136 0.054619 0.019881 0.041496 0.441235 2001-12-16 18:13:26
988 0.141781 0.087416 0.286679 0.088753 0.008396 0.063025 0.250268 0.062960 0.005094 0.005629 2001-01-03 20:23:44
989 0.377045 0.119088 0.072912 0.034323 0.003338 0.064164 0.114463 0.059107 0.023050 0.132509 2001-12-19 19:03:49
990 0.051661 0.047893 0.057490 0.200066 0.081752 0.154186 0.009546 0.032937 0.176595 0.187873 2001-02-14 21:29:58
991 0.012132 0.227984 0.045219 0.048532 0.072076 0.117802 0.263475 0.144284 0.028966 0.039529 2000-10-22 19:25:50
992 0.353518 0.009456 0.200745 0.039707 0.035467 0.100722 0.008388 0.086243 0.139374 0.026378 2000-08-24 19:19:32
993 0.137577 0.124454 0.009536 0.232614 0.101888 0.075090 0.059695 0.124679 0.004009 0.130457 2001-06-07 21:10:03
994 0.092338 0.029579 0.039457 0.402105 0.106955 0.018004 0.037641 0.009545 0.234853 0.029522 2000-06-03 03:57:04
995 0.147465 0.249481 0.182494 0.029455 0.050113 0.017217 0.049526 0.157240 0.049318 0.067690 2000-02-07 15:04:23
996 0.091999 0.318989 0.088607 0.059343 0.048333 0.287783 0.007916 0.004893 0.066485 0.025651 2000-01-14 23:45:04
997 0.024519 0.273072 0.079934 0.130409 0.004359 0.179298 0.144581 0.024430 0.026700 0.112698 2000-07-15 09:03:26
998 0.052035 0.004493 0.045288 0.118129 0.113495 0.215003 0.267225 0.027923 0.114969 0.041440 2000-03-23 15:47:57
999 0.080285 0.077427 0.028365 0.103227 0.100557 0.146552 0.109205 0.129704 0.153433 0.071244 2001-07-30 08:22:48

1000 rows × 11 columns


In [696]:
df.iloc[10,0:10].sum() # ok


Out[696]:
1.0

In [26]:
import time
import datetime

In [697]:
s = df.iloc[10,10]

In [698]:
s


Out[698]:
Timestamp('2000-04-25 09:32:47')

In [35]:
type(s)


Out[35]:
pandas.tslib.Timestamp

In [699]:
type(s.to_datetime())


Out[699]:
datetime.datetime

In [700]:
s_datetime = s.to_pydatetime()

In [701]:
s_datetime


Out[701]:
datetime.datetime(2000, 4, 25, 9, 32, 47)

In [703]:
unixtime = time.mktime(s_datetime.timetuple())

In [705]:
int(time.mktime(datetime.datetime.strptime(str(s_datetime), "%Y-%m-%d %H:%M:%S").timetuple()))


Out[705]:
956647967

In [73]:
df.date_sent.min()


Out[73]:
Timestamp('2000-01-01 15:40:23')

In [74]:
df.date_sent.max()


Out[74]:
Timestamp('2002-01-29 01:37:55')

In [709]:
df.columns = ['topic 1', 'topic 2', 'topic 3', 'topic 4', 'topic 5', 'topic 6', 'topic 7', 'topic 8', 'topic 9', 'topic 10', 'date_sent']

In [710]:
df


Out[710]:
topic 1 topic 2 topic 3 topic 4 topic 5 topic 6 topic 7 topic 8 topic 9 topic 10 date_sent
0 0.093013 0.022149 0.152614 0.122789 0.171756 0.008851 0.257211 0.011800 0.041068 0.118750 2001-02-08 02:11:19
1 0.085686 0.042914 0.193660 0.052411 0.377262 0.054326 0.103518 0.013129 0.029596 0.047497 2000-04-24 03:13:02
2 0.052673 0.013017 0.187891 0.027889 0.134614 0.109124 0.062208 0.023950 0.020901 0.367733 2001-04-05 18:06:51
3 0.080543 0.241699 0.013637 0.036184 0.010589 0.312160 0.143825 0.005105 0.141908 0.014350 2001-12-07 18:49:41
4 0.075367 0.102129 0.345652 0.095193 0.014923 0.130467 0.039766 0.037884 0.027764 0.130855 2001-05-21 16:55:44
5 0.029140 0.122982 0.183885 0.051679 0.087894 0.198557 0.029177 0.068652 0.194724 0.033311 2001-09-04 01:35:07
6 0.120828 0.080681 0.134731 0.087057 0.078469 0.151554 0.077353 0.145072 0.074153 0.050101 2001-01-05 04:02:09
7 0.234988 0.009897 0.029432 0.028404 0.054993 0.048191 0.349070 0.097725 0.056284 0.091017 2001-07-23 08:16:57
8 0.000614 0.034910 0.002672 0.010680 0.136185 0.043953 0.060662 0.047986 0.317369 0.344967 2001-04-05 04:41:15
9 0.014547 0.058735 0.153404 0.077710 0.002322 0.137340 0.038911 0.014986 0.289575 0.212471 2001-07-28 05:39:16
10 0.008695 0.026700 0.054163 0.387308 0.022092 0.041383 0.221447 0.016484 0.214351 0.007377 2000-04-25 09:32:47
11 0.041390 0.159062 0.054547 0.153180 0.088022 0.080946 0.234152 0.046570 0.125441 0.016689 2001-08-15 06:49:17
12 0.051968 0.035934 0.032615 0.059201 0.166128 0.229201 0.313454 0.046930 0.006893 0.057677 2001-09-17 12:16:59
13 0.051099 0.020306 0.159952 0.059786 0.112925 0.179584 0.040922 0.229889 0.069481 0.076057 2000-08-03 18:15:42
14 0.078620 0.038959 0.055026 0.031491 0.203583 0.132747 0.236623 0.107255 0.082339 0.033358 2000-02-13 04:09:58
15 0.181892 0.228793 0.063566 0.097666 0.067363 0.111606 0.012283 0.070138 0.035407 0.131286 2000-04-15 18:31:42
16 0.085797 0.337739 0.214189 0.113755 0.142805 0.007106 0.006445 0.051139 0.013605 0.027420 2001-06-29 11:58:24
17 0.054453 0.023030 0.018715 0.141864 0.416313 0.000064 0.223425 0.050595 0.009697 0.061843 2000-05-08 07:41:02
18 0.144780 0.072253 0.090191 0.087188 0.098689 0.000098 0.038569 0.321993 0.084521 0.061717 2001-05-22 20:07:18
19 0.118873 0.199206 0.006197 0.070047 0.038159 0.063785 0.168631 0.059917 0.018397 0.256788 2000-10-01 08:45:06
20 0.149439 0.184593 0.157709 0.110559 0.221373 0.068101 0.004920 0.013690 0.047693 0.041923 2001-12-23 19:10:42
21 0.036040 0.054603 0.000063 0.053995 0.116011 0.070401 0.269245 0.158960 0.206584 0.034098 2001-08-23 11:25:09
22 0.044565 0.245600 0.113162 0.021003 0.071046 0.362133 0.020708 0.031813 0.016154 0.073817 2001-06-08 15:48:47
23 0.119449 0.069428 0.003672 0.094421 0.018252 0.234732 0.358718 0.039515 0.012741 0.049072 2000-11-02 15:24:09
24 0.069022 0.028948 0.113062 0.114830 0.104455 0.066402 0.089271 0.061627 0.134000 0.218384 2001-06-28 03:59:06
25 0.013061 0.001281 0.058749 0.263196 0.099328 0.225964 0.021755 0.033043 0.110618 0.173005 2001-05-29 03:36:11
26 0.008506 0.019529 0.101543 0.098604 0.239346 0.003608 0.445534 0.072408 0.003736 0.007185 2001-07-30 20:29:29
27 0.013911 0.191937 0.343870 0.015008 0.039092 0.059851 0.211369 0.074437 0.009818 0.040706 2002-01-28 06:53:10
28 0.105587 0.101039 0.027008 0.128465 0.266995 0.059113 0.025297 0.061519 0.000380 0.224596 2001-01-31 00:29:07
29 0.012471 0.014510 0.068683 0.008481 0.256034 0.045586 0.055363 0.394376 0.045543 0.098953 2000-12-23 05:24:25
... ... ... ... ... ... ... ... ... ... ... ...
970 0.104878 0.189771 0.170740 0.165510 0.007500 0.124253 0.102664 0.033310 0.071928 0.029446 2000-09-13 18:08:15
971 0.010716 0.096125 0.065954 0.068900 0.097438 0.045346 0.094105 0.146061 0.156118 0.219237 2001-02-10 10:56:47
972 0.059508 0.225429 0.160102 0.034499 0.071608 0.003279 0.306367 0.015398 0.070192 0.053618 2000-07-21 18:31:22
973 0.236618 0.088829 0.261178 0.013578 0.288976 0.020972 0.067341 0.005094 0.014801 0.002615 2000-01-04 00:21:20
974 0.092546 0.027781 0.137550 0.050823 0.198944 0.036406 0.040805 0.000247 0.205088 0.209810 2000-06-11 00:25:58
975 0.020758 0.098846 0.183029 0.310018 0.124005 0.007286 0.006040 0.104336 0.140854 0.004829 2001-06-16 14:58:11
976 0.002662 0.178143 0.127200 0.185732 0.153589 0.097458 0.065183 0.051932 0.001569 0.136531 2000-04-11 09:47:53
977 0.101562 0.160400 0.168354 0.008245 0.212808 0.027732 0.178496 0.045559 0.083988 0.012857 2000-04-18 05:52:08
978 0.021030 0.002906 0.024274 0.136584 0.310754 0.159391 0.168610 0.011742 0.156293 0.008417 2000-10-25 02:14:54
979 0.022348 0.172398 0.006543 0.128303 0.062145 0.096896 0.007330 0.205899 0.100726 0.197413 2000-05-27 22:22:48
980 0.018218 0.023606 0.250958 0.001435 0.021875 0.011041 0.079913 0.022351 0.170612 0.399991 2000-08-19 13:40:20
981 0.107563 0.118399 0.192274 0.075835 0.044716 0.083989 0.051816 0.110655 0.200965 0.013788 2002-01-01 01:56:51
982 0.323178 0.012526 0.179570 0.044297 0.066666 0.003718 0.191621 0.017643 0.082578 0.078201 2000-06-24 09:42:36
983 0.013611 0.199819 0.011796 0.158551 0.169127 0.062300 0.010697 0.087363 0.013686 0.273049 2000-04-07 00:59:29
984 0.060021 0.006483 0.090845 0.064929 0.049884 0.011103 0.028937 0.517896 0.073503 0.096398 2001-08-09 18:29:44
985 0.263112 0.017212 0.095081 0.132283 0.037569 0.077197 0.012491 0.133828 0.195391 0.035837 2000-05-26 03:11:17
986 0.083490 0.097345 0.093668 0.056783 0.121588 0.134282 0.139747 0.087321 0.080412 0.105364 2001-01-30 20:10:11
987 0.015644 0.030562 0.097094 0.260417 0.012915 0.026136 0.054619 0.019881 0.041496 0.441235 2001-12-16 18:13:26
988 0.141781 0.087416 0.286679 0.088753 0.008396 0.063025 0.250268 0.062960 0.005094 0.005629 2001-01-03 20:23:44
989 0.377045 0.119088 0.072912 0.034323 0.003338 0.064164 0.114463 0.059107 0.023050 0.132509 2001-12-19 19:03:49
990 0.051661 0.047893 0.057490 0.200066 0.081752 0.154186 0.009546 0.032937 0.176595 0.187873 2001-02-14 21:29:58
991 0.012132 0.227984 0.045219 0.048532 0.072076 0.117802 0.263475 0.144284 0.028966 0.039529 2000-10-22 19:25:50
992 0.353518 0.009456 0.200745 0.039707 0.035467 0.100722 0.008388 0.086243 0.139374 0.026378 2000-08-24 19:19:32
993 0.137577 0.124454 0.009536 0.232614 0.101888 0.075090 0.059695 0.124679 0.004009 0.130457 2001-06-07 21:10:03
994 0.092338 0.029579 0.039457 0.402105 0.106955 0.018004 0.037641 0.009545 0.234853 0.029522 2000-06-03 03:57:04
995 0.147465 0.249481 0.182494 0.029455 0.050113 0.017217 0.049526 0.157240 0.049318 0.067690 2000-02-07 15:04:23
996 0.091999 0.318989 0.088607 0.059343 0.048333 0.287783 0.007916 0.004893 0.066485 0.025651 2000-01-14 23:45:04
997 0.024519 0.273072 0.079934 0.130409 0.004359 0.179298 0.144581 0.024430 0.026700 0.112698 2000-07-15 09:03:26
998 0.052035 0.004493 0.045288 0.118129 0.113495 0.215003 0.267225 0.027923 0.114969 0.041440 2000-03-23 15:47:57
999 0.080285 0.077427 0.028365 0.103227 0.100557 0.146552 0.109205 0.129704 0.153433 0.071244 2001-07-30 08:22:48

1000 rows × 11 columns


In [711]:
df_transposed = df.transpose()

In [712]:
df_transposed


Out[712]:
0 1 2 3 4 5 6 7 8 9 ... 990 991 992 993 994 995 996 997 998 999
topic 1 0.0930134 0.0856861 0.0526728 0.0805431 0.0753671 0.0291399 0.120828 0.234988 0.00061385 0.014547 ... 0.051661 0.0121318 0.353518 0.137577 0.0923384 0.147465 0.0919987 0.0245186 0.0520352 0.0802854
topic 2 0.0221486 0.0429138 0.0130168 0.241699 0.102129 0.122982 0.0806812 0.00989652 0.0349104 0.0587349 ... 0.0478931 0.227984 0.00945635 0.124454 0.0295791 0.249481 0.318989 0.273072 0.00449325 0.0774268
topic 3 0.152614 0.19366 0.187891 0.013637 0.345652 0.183885 0.134731 0.0294317 0.0026724 0.153404 ... 0.0574905 0.0452194 0.200745 0.00953647 0.0394566 0.182494 0.0886073 0.0799344 0.0452882 0.0283653
topic 4 0.122789 0.0524111 0.0278894 0.0361837 0.095193 0.051679 0.087057 0.0284038 0.0106801 0.0777098 ... 0.200066 0.0485323 0.0397071 0.232614 0.402105 0.0294553 0.0593434 0.130409 0.118129 0.103227
topic 5 0.171756 0.377262 0.134614 0.0105889 0.0149226 0.0878941 0.0784691 0.0549926 0.136185 0.00232202 ... 0.0817525 0.0720759 0.0354671 0.101888 0.106955 0.0501135 0.0483328 0.00435915 0.113495 0.100557
topic 6 0.00885137 0.0543256 0.109124 0.31216 0.130467 0.198557 0.151554 0.0481912 0.0439529 0.13734 ... 0.154186 0.117802 0.100722 0.0750903 0.0180042 0.0172174 0.287783 0.179298 0.215003 0.146552
topic 7 0.257211 0.103518 0.0622078 0.143825 0.0397664 0.0291767 0.0773528 0.34907 0.0606622 0.0389112 ... 0.00954551 0.263475 0.00838837 0.0596946 0.0376408 0.049526 0.00791628 0.144581 0.267225 0.109205
topic 8 0.0117995 0.0131293 0.0239497 0.00510541 0.0378838 0.0686517 0.145072 0.0977247 0.0479862 0.0149862 ... 0.0329374 0.144284 0.0862433 0.124679 0.00954525 0.15724 0.00489273 0.0244297 0.0279229 0.129704
topic 9 0.0410675 0.0295965 0.0209008 0.141908 0.0277643 0.194724 0.0741531 0.0562845 0.317369 0.289575 ... 0.176595 0.0289658 0.139374 0.00400948 0.234853 0.0493184 0.0664848 0.0267002 0.114969 0.153433
topic 10 0.11875 0.0474974 0.367733 0.0143504 0.130855 0.0333113 0.0501012 0.0910169 0.344967 0.212471 ... 0.187873 0.0395291 0.0263781 0.130457 0.0295222 0.0676899 0.0256515 0.112698 0.0414397 0.0712442
date_sent 2001-02-08 02:11:19 2000-04-24 03:13:02 2001-04-05 18:06:51 2001-12-07 18:49:41 2001-05-21 16:55:44 2001-09-04 01:35:07 2001-01-05 04:02:09 2001-07-23 08:16:57 2001-04-05 04:41:15 2001-07-28 05:39:16 ... 2001-02-14 21:29:58 2000-10-22 19:25:50 2000-08-24 19:19:32 2001-06-07 21:10:03 2000-06-03 03:57:04 2000-02-07 15:04:23 2000-01-14 23:45:04 2000-07-15 09:03:26 2000-03-23 15:47:57 2001-07-30 08:22:48

11 rows × 1000 columns


In [713]:
df_sorted = df.sort('date_sent')


/home/daniela/anaconda/envs/spark-lda/lib/python2.7/site-packages/ipykernel/__main__.py:1: FutureWarning: sort(columns=....) is deprecated, use sort_values(by=.....)
  if __name__ == '__main__':

In [714]:
df_sorted


Out[714]:
topic 1 topic 2 topic 3 topic 4 topic 5 topic 6 topic 7 topic 8 topic 9 topic 10 date_sent
581 0.295507 0.145733 0.053776 0.127954 0.013860 0.052633 0.046821 0.008934 0.208308 0.046475 2000-01-02 17:31:04
973 0.236618 0.088829 0.261178 0.013578 0.288976 0.020972 0.067341 0.005094 0.014801 0.002615 2000-01-04 00:21:20
645 0.084831 0.019443 0.055865 0.478758 0.057965 0.149225 0.007808 0.024633 0.013256 0.108216 2000-01-04 19:33:03
375 0.107813 0.071776 0.203054 0.155733 0.012676 0.201241 0.090976 0.094853 0.019180 0.042697 2000-01-05 08:17:26
693 0.026330 0.021470 0.007319 0.140718 0.008898 0.030695 0.149755 0.418972 0.165031 0.030811 2000-01-05 15:34:53
249 0.037885 0.230147 0.243607 0.041750 0.044757 0.085000 0.014769 0.068876 0.122314 0.110894 2000-01-07 19:29:33
856 0.218569 0.108124 0.155278 0.047027 0.000258 0.179628 0.097584 0.046384 0.081707 0.065441 2000-01-09 11:15:21
369 0.049964 0.041053 0.238971 0.025215 0.014680 0.090712 0.039412 0.115293 0.219682 0.165017 2000-01-12 21:42:07
136 0.065566 0.015938 0.212923 0.049847 0.210171 0.225969 0.022989 0.156832 0.010195 0.029569 2000-01-13 03:24:28
952 0.142812 0.038038 0.050256 0.041003 0.016806 0.127495 0.362249 0.076115 0.081099 0.064128 2000-01-13 08:29:35
243 0.041462 0.000775 0.278813 0.092175 0.101982 0.003340 0.008886 0.120068 0.009842 0.342656 2000-01-13 11:06:08
996 0.091999 0.318989 0.088607 0.059343 0.048333 0.287783 0.007916 0.004893 0.066485 0.025651 2000-01-14 23:45:04
735 0.081630 0.259295 0.012869 0.092532 0.137904 0.016525 0.047223 0.084235 0.222095 0.045693 2000-01-15 13:17:34
317 0.065678 0.425565 0.029173 0.028390 0.143771 0.009974 0.015340 0.183663 0.095894 0.002554 2000-01-17 02:47:47
696 0.019383 0.139534 0.020148 0.124191 0.033727 0.004149 0.229452 0.275995 0.049924 0.103498 2000-01-17 03:09:38
754 0.381909 0.089532 0.023149 0.096199 0.039376 0.016216 0.144339 0.024773 0.089756 0.094750 2000-01-18 11:50:35
130 0.131184 0.015120 0.010257 0.022295 0.368155 0.247395 0.100258 0.056490 0.023369 0.025477 2000-01-18 11:58:28
835 0.047104 0.060768 0.441872 0.005807 0.157505 0.096719 0.085034 0.070779 0.007283 0.027130 2000-01-19 04:02:57
526 0.004985 0.145901 0.058732 0.366175 0.157370 0.095307 0.022548 0.019888 0.121144 0.007949 2000-01-20 04:47:47
244 0.113741 0.035646 0.035689 0.017731 0.054782 0.195462 0.126084 0.192876 0.058650 0.169339 2000-01-22 03:43:43
477 0.019514 0.009611 0.042144 0.245132 0.074417 0.007386 0.135803 0.218575 0.246487 0.000931 2000-01-24 03:01:43
570 0.184911 0.014117 0.284819 0.069457 0.019148 0.123333 0.262974 0.019656 0.016401 0.005185 2000-01-25 19:49:19
800 0.039403 0.010842 0.270326 0.013437 0.025608 0.045082 0.005486 0.027049 0.486764 0.076003 2000-01-26 02:44:47
515 0.070215 0.148913 0.006539 0.014833 0.064827 0.409218 0.038896 0.125216 0.013844 0.107499 2000-01-26 04:06:14
42 0.272102 0.011961 0.079270 0.285127 0.068953 0.154831 0.006997 0.091408 0.026234 0.003117 2000-01-26 22:09:44
300 0.184049 0.004759 0.058452 0.037811 0.025051 0.553627 0.015274 0.003822 0.035220 0.081934 2000-01-28 00:24:16
687 0.339530 0.174255 0.057523 0.017691 0.093041 0.024877 0.037956 0.096565 0.138142 0.020420 2000-01-28 06:34:30
392 0.049062 0.195580 0.082824 0.309190 0.111692 0.059761 0.049459 0.116540 0.010004 0.015888 2000-01-28 11:56:19
851 0.002121 0.027337 0.100050 0.394699 0.112648 0.095919 0.244262 0.012520 0.007283 0.003160 2000-01-30 07:14:27
307 0.079660 0.161457 0.064052 0.146606 0.026922 0.076124 0.111235 0.123168 0.036777 0.173999 2000-02-03 21:59:37
... ... ... ... ... ... ... ... ... ... ... ...
82 0.071735 0.021860 0.160378 0.185358 0.009312 0.040617 0.157661 0.311180 0.005601 0.036298 2002-01-06 14:25:02
956 0.064726 0.152685 0.188650 0.018602 0.129237 0.075963 0.022317 0.021138 0.209570 0.117112 2002-01-08 12:36:01
949 0.071648 0.028338 0.238363 0.029513 0.079119 0.149625 0.023512 0.065848 0.134221 0.179814 2002-01-08 13:42:25
758 0.015657 0.060679 0.099374 0.139240 0.098926 0.063583 0.055317 0.238904 0.178717 0.049602 2002-01-09 19:33:31
590 0.093205 0.460975 0.032448 0.025523 0.001965 0.130665 0.031558 0.114500 0.090612 0.018550 2002-01-09 20:36:00
467 0.156644 0.199625 0.003367 0.001315 0.089877 0.143798 0.005428 0.095168 0.097631 0.207147 2002-01-10 10:40:06
233 0.043264 0.119681 0.060697 0.128899 0.036163 0.042360 0.056641 0.000603 0.467818 0.043874 2002-01-11 14:56:32
612 0.075110 0.072387 0.046349 0.137404 0.083118 0.037604 0.035507 0.030352 0.018395 0.463774 2002-01-14 00:22:35
738 0.202896 0.114105 0.060333 0.021988 0.086536 0.092099 0.169198 0.041070 0.097610 0.114165 2002-01-14 15:50:07
528 0.173248 0.117832 0.035754 0.173387 0.006274 0.294593 0.003139 0.034721 0.090612 0.070440 2002-01-14 17:25:03
840 0.095381 0.031664 0.018289 0.154094 0.094605 0.034408 0.132710 0.053548 0.073285 0.312014 2002-01-14 22:24:19
178 0.132631 0.144264 0.161660 0.010232 0.217883 0.140049 0.114788 0.035421 0.005166 0.037907 2002-01-15 21:11:28
663 0.065938 0.196917 0.090966 0.010165 0.016798 0.046848 0.328187 0.029974 0.139907 0.074302 2002-01-15 21:58:40
496 0.119269 0.049479 0.092995 0.034295 0.345417 0.070855 0.045676 0.095302 0.003077 0.143636 2002-01-17 07:23:52
579 0.106536 0.020095 0.027605 0.167471 0.136147 0.002179 0.312278 0.108939 0.102902 0.015848 2002-01-18 02:49:39
411 0.043196 0.020536 0.326856 0.013626 0.098761 0.189175 0.021365 0.047730 0.127414 0.111340 2002-01-18 20:11:54
737 0.196192 0.119975 0.169150 0.036279 0.196575 0.034753 0.031298 0.086331 0.080996 0.048452 2002-01-19 00:00:40
573 0.039824 0.081854 0.001252 0.015216 0.098921 0.041452 0.321443 0.049956 0.129689 0.220393 2002-01-19 06:46:56
31 0.241266 0.030317 0.193640 0.066061 0.042074 0.040608 0.092595 0.072156 0.087654 0.133630 2002-01-20 19:21:57
445 0.112893 0.058848 0.103363 0.056181 0.002882 0.100528 0.052107 0.077873 0.351376 0.083950 2002-01-23 02:50:00
959 0.019550 0.111985 0.132963 0.043651 0.183033 0.213980 0.086179 0.034559 0.062056 0.112045 2002-01-23 18:35:15
434 0.030324 0.074279 0.205430 0.022739 0.002250 0.063655 0.079286 0.200747 0.233848 0.087442 2002-01-24 02:57:03
537 0.192026 0.003181 0.151608 0.093771 0.000745 0.111472 0.092321 0.085358 0.179258 0.090261 2002-01-24 10:09:57
226 0.110069 0.291211 0.053493 0.144194 0.023110 0.013772 0.011617 0.271902 0.035154 0.045478 2002-01-25 01:36:38
630 0.124617 0.128002 0.127085 0.124267 0.131347 0.039676 0.015123 0.033080 0.245513 0.031291 2002-01-25 07:48:25
720 0.074761 0.021177 0.299361 0.254209 0.051425 0.055237 0.105428 0.095883 0.016022 0.026496 2002-01-25 12:59:09
864 0.112015 0.266132 0.323055 0.068769 0.009773 0.084479 0.059088 0.015410 0.022656 0.038622 2002-01-25 20:03:45
910 0.105642 0.078913 0.197672 0.147098 0.087234 0.020433 0.036837 0.084054 0.175224 0.066893 2002-01-27 08:07:46
27 0.013911 0.191937 0.343870 0.015008 0.039092 0.059851 0.211369 0.074437 0.009818 0.040706 2002-01-28 06:53:10
853 0.025118 0.324607 0.095469 0.074470 0.029985 0.046520 0.165440 0.210486 0.006159 0.021745 2002-01-28 22:40:49

1000 rows × 11 columns


In [715]:
type(df.iloc[0]['date_sent'])


Out[715]:
pandas.tslib.Timestamp

In [716]:
int(time.mktime(datetime.datetime.strptime(str(df_sorted.iloc[0]['date_sent'].to_datetime()), "%Y-%m-%d %H:%M:%S").timetuple()))


Out[716]:
946830664

In [717]:
# convert date to timestamp
def date_to_timestamp(col):
    return int(time.mktime(datetime.datetime.strptime(str(col.to_datetime()), "%Y-%m-%d %H:%M:%S").timetuple())*1000)

In [718]:
df_sorted['timestamp'] = df_sorted.date_sent.apply(date_to_timestamp)

In [719]:
df_sorted_transposed = df_sorted.transpose()

In [720]:
df_sorted_transposed


Out[720]:
581 973 645 375 693 249 856 369 136 952 ... 959 434 537 226 630 720 864 910 27 853
topic 1 0.295507 0.236618 0.084831 0.107813 0.0263304 0.0378846 0.218569 0.0499639 0.065566 0.142812 ... 0.0195496 0.0303236 0.192026 0.110069 0.124617 0.0747611 0.112015 0.105642 0.0139111 0.0251184
topic 2 0.145733 0.0888287 0.0194426 0.0717761 0.0214702 0.230147 0.108124 0.0410534 0.0159378 0.0380379 ... 0.111985 0.0742786 0.00318074 0.291211 0.128002 0.021177 0.266132 0.0789129 0.191937 0.324607
topic 3 0.0537758 0.261178 0.0558645 0.203054 0.00731908 0.243607 0.155278 0.238971 0.212923 0.0502558 ... 0.132963 0.20543 0.151608 0.0534928 0.127085 0.299361 0.323055 0.197672 0.34387 0.0954687
topic 4 0.127954 0.0135775 0.478758 0.155733 0.140718 0.0417502 0.0470271 0.0252149 0.0498472 0.0410025 ... 0.0436509 0.0227393 0.0937707 0.144194 0.124267 0.254209 0.0687687 0.147098 0.0150084 0.0744703
topic 5 0.0138603 0.288976 0.057965 0.0126758 0.00889843 0.0447575 0.000257812 0.01468 0.210171 0.016806 ... 0.183033 0.00225048 0.000744507 0.0231104 0.131347 0.0514248 0.00977319 0.0872341 0.0390924 0.0299853
topic 6 0.0526328 0.0209717 0.149225 0.201241 0.0306953 0.0850002 0.179628 0.090712 0.225969 0.127495 ... 0.21398 0.0636547 0.111472 0.0137718 0.0396759 0.0552367 0.0844794 0.0204332 0.059851 0.0465197
topic 7 0.0468208 0.0673406 0.00780847 0.0909765 0.149755 0.014769 0.0975838 0.0394123 0.0229889 0.362249 ... 0.0861787 0.0792857 0.0923209 0.0116169 0.0151229 0.105428 0.0590881 0.0368366 0.211369 0.16544
topic 8 0.00893422 0.0050943 0.0246328 0.0948531 0.418972 0.0688765 0.0463843 0.115293 0.156832 0.0761151 ... 0.0345586 0.200747 0.0853583 0.271902 0.03308 0.095883 0.0154095 0.0840537 0.0744368 0.210486
topic 9 0.208308 0.0148006 0.013256 0.01918 0.165031 0.122314 0.0817072 0.219682 0.0101951 0.0810989 ... 0.0620559 0.233848 0.179258 0.035154 0.245513 0.0160223 0.0226559 0.175224 0.00981819 0.00615851
topic 10 0.046475 0.00261485 0.108216 0.0426973 0.0308107 0.110894 0.0654407 0.165017 0.0295693 0.0641284 ... 0.112045 0.0874419 0.0902607 0.045478 0.031291 0.0264962 0.0386222 0.0668927 0.0407056 0.0217455
date_sent 2000-01-02 17:31:04 2000-01-04 00:21:20 2000-01-04 19:33:03 2000-01-05 08:17:26 2000-01-05 15:34:53 2000-01-07 19:29:33 2000-01-09 11:15:21 2000-01-12 21:42:07 2000-01-13 03:24:28 2000-01-13 08:29:35 ... 2002-01-23 18:35:15 2002-01-24 02:57:03 2002-01-24 10:09:57 2002-01-25 01:36:38 2002-01-25 07:48:25 2002-01-25 12:59:09 2002-01-25 20:03:45 2002-01-27 08:07:46 2002-01-28 06:53:10 2002-01-28 22:40:49
timestamp 946830664000 946941680000 947010783000 947056646000 947082893000 947269773000 947412921000 947709727000 947730268000 947748575000 ... 1011807315000 1011837423000 1011863397000 1011918998000 1011941305000 1011959949000 1011985425000 1012115266000 1012197190000 1012254049000

12 rows × 1000 columns


In [721]:
df_sorted


Out[721]:
topic 1 topic 2 topic 3 topic 4 topic 5 topic 6 topic 7 topic 8 topic 9 topic 10 date_sent timestamp
581 0.295507 0.145733 0.053776 0.127954 0.013860 0.052633 0.046821 0.008934 0.208308 0.046475 2000-01-02 17:31:04 946830664000
973 0.236618 0.088829 0.261178 0.013578 0.288976 0.020972 0.067341 0.005094 0.014801 0.002615 2000-01-04 00:21:20 946941680000
645 0.084831 0.019443 0.055865 0.478758 0.057965 0.149225 0.007808 0.024633 0.013256 0.108216 2000-01-04 19:33:03 947010783000
375 0.107813 0.071776 0.203054 0.155733 0.012676 0.201241 0.090976 0.094853 0.019180 0.042697 2000-01-05 08:17:26 947056646000
693 0.026330 0.021470 0.007319 0.140718 0.008898 0.030695 0.149755 0.418972 0.165031 0.030811 2000-01-05 15:34:53 947082893000
249 0.037885 0.230147 0.243607 0.041750 0.044757 0.085000 0.014769 0.068876 0.122314 0.110894 2000-01-07 19:29:33 947269773000
856 0.218569 0.108124 0.155278 0.047027 0.000258 0.179628 0.097584 0.046384 0.081707 0.065441 2000-01-09 11:15:21 947412921000
369 0.049964 0.041053 0.238971 0.025215 0.014680 0.090712 0.039412 0.115293 0.219682 0.165017 2000-01-12 21:42:07 947709727000
136 0.065566 0.015938 0.212923 0.049847 0.210171 0.225969 0.022989 0.156832 0.010195 0.029569 2000-01-13 03:24:28 947730268000
952 0.142812 0.038038 0.050256 0.041003 0.016806 0.127495 0.362249 0.076115 0.081099 0.064128 2000-01-13 08:29:35 947748575000
243 0.041462 0.000775 0.278813 0.092175 0.101982 0.003340 0.008886 0.120068 0.009842 0.342656 2000-01-13 11:06:08 947757968000
996 0.091999 0.318989 0.088607 0.059343 0.048333 0.287783 0.007916 0.004893 0.066485 0.025651 2000-01-14 23:45:04 947889904000
735 0.081630 0.259295 0.012869 0.092532 0.137904 0.016525 0.047223 0.084235 0.222095 0.045693 2000-01-15 13:17:34 947938654000
317 0.065678 0.425565 0.029173 0.028390 0.143771 0.009974 0.015340 0.183663 0.095894 0.002554 2000-01-17 02:47:47 948073667000
696 0.019383 0.139534 0.020148 0.124191 0.033727 0.004149 0.229452 0.275995 0.049924 0.103498 2000-01-17 03:09:38 948074978000
754 0.381909 0.089532 0.023149 0.096199 0.039376 0.016216 0.144339 0.024773 0.089756 0.094750 2000-01-18 11:50:35 948192635000
130 0.131184 0.015120 0.010257 0.022295 0.368155 0.247395 0.100258 0.056490 0.023369 0.025477 2000-01-18 11:58:28 948193108000
835 0.047104 0.060768 0.441872 0.005807 0.157505 0.096719 0.085034 0.070779 0.007283 0.027130 2000-01-19 04:02:57 948250977000
526 0.004985 0.145901 0.058732 0.366175 0.157370 0.095307 0.022548 0.019888 0.121144 0.007949 2000-01-20 04:47:47 948340067000
244 0.113741 0.035646 0.035689 0.017731 0.054782 0.195462 0.126084 0.192876 0.058650 0.169339 2000-01-22 03:43:43 948509023000
477 0.019514 0.009611 0.042144 0.245132 0.074417 0.007386 0.135803 0.218575 0.246487 0.000931 2000-01-24 03:01:43 948679303000
570 0.184911 0.014117 0.284819 0.069457 0.019148 0.123333 0.262974 0.019656 0.016401 0.005185 2000-01-25 19:49:19 948826159000
800 0.039403 0.010842 0.270326 0.013437 0.025608 0.045082 0.005486 0.027049 0.486764 0.076003 2000-01-26 02:44:47 948851087000
515 0.070215 0.148913 0.006539 0.014833 0.064827 0.409218 0.038896 0.125216 0.013844 0.107499 2000-01-26 04:06:14 948855974000
42 0.272102 0.011961 0.079270 0.285127 0.068953 0.154831 0.006997 0.091408 0.026234 0.003117 2000-01-26 22:09:44 948920984000
300 0.184049 0.004759 0.058452 0.037811 0.025051 0.553627 0.015274 0.003822 0.035220 0.081934 2000-01-28 00:24:16 949015456000
687 0.339530 0.174255 0.057523 0.017691 0.093041 0.024877 0.037956 0.096565 0.138142 0.020420 2000-01-28 06:34:30 949037670000
392 0.049062 0.195580 0.082824 0.309190 0.111692 0.059761 0.049459 0.116540 0.010004 0.015888 2000-01-28 11:56:19 949056979000
851 0.002121 0.027337 0.100050 0.394699 0.112648 0.095919 0.244262 0.012520 0.007283 0.003160 2000-01-30 07:14:27 949212867000
307 0.079660 0.161457 0.064052 0.146606 0.026922 0.076124 0.111235 0.123168 0.036777 0.173999 2000-02-03 21:59:37 949611577000
... ... ... ... ... ... ... ... ... ... ... ... ...
82 0.071735 0.021860 0.160378 0.185358 0.009312 0.040617 0.157661 0.311180 0.005601 0.036298 2002-01-06 14:25:02 1010323502000
956 0.064726 0.152685 0.188650 0.018602 0.129237 0.075963 0.022317 0.021138 0.209570 0.117112 2002-01-08 12:36:01 1010489761000
949 0.071648 0.028338 0.238363 0.029513 0.079119 0.149625 0.023512 0.065848 0.134221 0.179814 2002-01-08 13:42:25 1010493745000
758 0.015657 0.060679 0.099374 0.139240 0.098926 0.063583 0.055317 0.238904 0.178717 0.049602 2002-01-09 19:33:31 1010601211000
590 0.093205 0.460975 0.032448 0.025523 0.001965 0.130665 0.031558 0.114500 0.090612 0.018550 2002-01-09 20:36:00 1010604960000
467 0.156644 0.199625 0.003367 0.001315 0.089877 0.143798 0.005428 0.095168 0.097631 0.207147 2002-01-10 10:40:06 1010655606000
233 0.043264 0.119681 0.060697 0.128899 0.036163 0.042360 0.056641 0.000603 0.467818 0.043874 2002-01-11 14:56:32 1010757392000
612 0.075110 0.072387 0.046349 0.137404 0.083118 0.037604 0.035507 0.030352 0.018395 0.463774 2002-01-14 00:22:35 1010964155000
738 0.202896 0.114105 0.060333 0.021988 0.086536 0.092099 0.169198 0.041070 0.097610 0.114165 2002-01-14 15:50:07 1011019807000
528 0.173248 0.117832 0.035754 0.173387 0.006274 0.294593 0.003139 0.034721 0.090612 0.070440 2002-01-14 17:25:03 1011025503000
840 0.095381 0.031664 0.018289 0.154094 0.094605 0.034408 0.132710 0.053548 0.073285 0.312014 2002-01-14 22:24:19 1011043459000
178 0.132631 0.144264 0.161660 0.010232 0.217883 0.140049 0.114788 0.035421 0.005166 0.037907 2002-01-15 21:11:28 1011125488000
663 0.065938 0.196917 0.090966 0.010165 0.016798 0.046848 0.328187 0.029974 0.139907 0.074302 2002-01-15 21:58:40 1011128320000
496 0.119269 0.049479 0.092995 0.034295 0.345417 0.070855 0.045676 0.095302 0.003077 0.143636 2002-01-17 07:23:52 1011248632000
579 0.106536 0.020095 0.027605 0.167471 0.136147 0.002179 0.312278 0.108939 0.102902 0.015848 2002-01-18 02:49:39 1011318579000
411 0.043196 0.020536 0.326856 0.013626 0.098761 0.189175 0.021365 0.047730 0.127414 0.111340 2002-01-18 20:11:54 1011381114000
737 0.196192 0.119975 0.169150 0.036279 0.196575 0.034753 0.031298 0.086331 0.080996 0.048452 2002-01-19 00:00:40 1011394840000
573 0.039824 0.081854 0.001252 0.015216 0.098921 0.041452 0.321443 0.049956 0.129689 0.220393 2002-01-19 06:46:56 1011419216000
31 0.241266 0.030317 0.193640 0.066061 0.042074 0.040608 0.092595 0.072156 0.087654 0.133630 2002-01-20 19:21:57 1011550917000
445 0.112893 0.058848 0.103363 0.056181 0.002882 0.100528 0.052107 0.077873 0.351376 0.083950 2002-01-23 02:50:00 1011750600000
959 0.019550 0.111985 0.132963 0.043651 0.183033 0.213980 0.086179 0.034559 0.062056 0.112045 2002-01-23 18:35:15 1011807315000
434 0.030324 0.074279 0.205430 0.022739 0.002250 0.063655 0.079286 0.200747 0.233848 0.087442 2002-01-24 02:57:03 1011837423000
537 0.192026 0.003181 0.151608 0.093771 0.000745 0.111472 0.092321 0.085358 0.179258 0.090261 2002-01-24 10:09:57 1011863397000
226 0.110069 0.291211 0.053493 0.144194 0.023110 0.013772 0.011617 0.271902 0.035154 0.045478 2002-01-25 01:36:38 1011918998000
630 0.124617 0.128002 0.127085 0.124267 0.131347 0.039676 0.015123 0.033080 0.245513 0.031291 2002-01-25 07:48:25 1011941305000
720 0.074761 0.021177 0.299361 0.254209 0.051425 0.055237 0.105428 0.095883 0.016022 0.026496 2002-01-25 12:59:09 1011959949000
864 0.112015 0.266132 0.323055 0.068769 0.009773 0.084479 0.059088 0.015410 0.022656 0.038622 2002-01-25 20:03:45 1011985425000
910 0.105642 0.078913 0.197672 0.147098 0.087234 0.020433 0.036837 0.084054 0.175224 0.066893 2002-01-27 08:07:46 1012115266000
27 0.013911 0.191937 0.343870 0.015008 0.039092 0.059851 0.211369 0.074437 0.009818 0.040706 2002-01-28 06:53:10 1012197190000
853 0.025118 0.324607 0.095469 0.074470 0.029985 0.046520 0.165440 0.210486 0.006159 0.021745 2002-01-28 22:40:49 1012254049000

1000 rows × 12 columns


In [722]:
df_sorted['timestamp'].max()


Out[722]:
1012254049000

In [723]:
df_sorted['timestamp'].min()


Out[723]:
946830664000

In [724]:
# binning
df_sorted['bins'] = pd.cut(x=df_sorted['timestamp'], bins=80) # 80 bins

In [725]:
df_result = df_sorted.groupby('bins').sum()

In [726]:
df_result.shape # YES, 80 bins


Out[726]:
(80, 11)

In [745]:
df_result


Out[745]:
topic 1 topic 2 topic 3 topic 4 topic 5 topic 6 topic 7 topic 8 topic 9 topic 10 timestamp
bins
(946765240615, 947648456312.5] 1.007552 0.685522 0.980076 1.005518 0.427391 0.719395 0.475054 0.667747 0.624597 0.407149 6629605360000
(947648456312.5, 948466248625] 1.123675 1.550507 1.465771 1.003171 1.429781 1.221584 1.085647 1.189025 0.996766 0.934072 11375900528000
(948466248625, 949284040937.5] 1.274648 0.633021 1.017636 1.405109 0.650166 1.669496 0.923190 0.904227 1.039030 0.483477 9488965502000
(949284040937.5, 950101833250] 1.596416 1.842282 0.755444 1.557636 0.835026 0.735630 1.121967 1.354338 0.807058 1.394204 11398647735000
(950101833250, 950919625562.5] 0.898104 1.433256 1.498241 1.416790 1.228560 1.273009 1.991276 1.332969 1.844143 1.083653 13306824525000
(950919625562.5, 951737417875] 1.220334 0.948717 0.756356 1.266777 1.095931 1.117851 1.485811 0.955781 1.031973 1.120469 10464416146000
(951737417875, 952555210187.5] 1.674430 1.086312 2.586929 1.600311 2.071624 1.781700 1.277053 1.321565 1.467317 1.132759 15234021514000
(952555210187.5, 953373002500] 0.924775 1.571181 1.345554 1.572265 1.539072 1.286522 1.088337 1.363976 1.345093 0.963224 12388362024000
(953373002500, 954190794812.5] 1.277759 1.929480 2.587259 1.680129 1.566446 2.025569 2.314296 1.330716 2.313009 1.975336 18122088302000
(954190794812.5, 955008587125] 0.593085 0.688275 0.779247 1.120279 1.007076 0.621263 0.773629 1.363644 1.211784 0.841716 8591609849000
(955008587125, 955826379437.5] 1.033633 2.581698 1.456174 2.129829 2.376456 1.602061 1.705544 1.088089 1.325298 1.701219 16241731429000
(955826379437.5, 956644171750] 2.114098 1.329558 1.940213 1.191609 1.952000 2.059579 1.420415 1.058191 1.694927 1.239410 15299602263000
(956644171750, 957461964062.5] 1.319687 1.449692 1.937943 1.484700 2.188833 1.486983 1.988814 1.699911 1.257609 1.185827 15312087636000
(957461964062.5, 958279756375] 1.430690 1.580519 0.939975 1.166423 1.483533 1.028902 1.014712 1.029512 2.028419 1.297315 12451435422000
(958279756375, 959097548687.5] 0.962628 0.857658 0.555916 0.779756 0.935369 0.610194 0.557814 0.911180 1.042642 0.786843 7669568347000
(959097548687.5, 959915341000] 1.601419 1.704018 1.616987 1.366620 1.680342 1.733256 1.799239 1.581799 1.187681 1.728640 15352322899000
(959915341000, 960733133312.5] 1.323012 1.876945 0.973538 1.751514 1.905528 0.790493 1.232818 1.437528 1.249128 1.459496 13443775703000
(960733133312.5, 961550925625] 0.465713 0.671282 0.496628 0.369047 0.151633 0.122029 0.194009 0.476193 0.437125 0.616342 3844260372000
(961550925625, 962368717937.5] 1.238513 1.003637 1.370688 0.952986 1.143071 1.715246 1.324680 0.965032 1.324695 0.961453 11543342709000
(962368717937.5, 963186510250] 2.430706 2.508781 1.540975 1.726304 1.956148 2.267008 2.127841 1.705128 1.773001 1.964106 19255221186000
(963186510250, 964004302562.5] 1.356876 1.334373 1.799615 1.725552 1.335314 1.780126 1.927278 1.714269 2.118604 1.907994 16381320550000
(964004302562.5, 964822094875] 0.512868 0.786008 1.273472 1.133441 0.411935 0.727975 0.639447 0.772250 0.964182 0.778422 7715898506000
(964822094875, 965639887187.5] 0.922972 1.275636 1.208865 1.673514 0.708275 1.064018 1.159248 1.130495 0.798978 1.057999 10616804171000
(965639887187.5, 966457679500] 1.136363 1.202709 0.699779 0.640088 0.966932 1.213829 1.099285 0.761878 1.170479 1.108659 9660718909000
(966457679500, 967275471812.5] 1.493322 1.705308 2.366915 1.820026 1.644842 1.694028 1.494887 1.239565 2.083910 2.457198 17404262489000
(967275471812.5, 968093264125] 0.822106 1.096781 0.907156 1.140390 1.110702 0.648182 1.290197 1.237898 0.759640 0.986949 9677327196000
(968093264125, 968911056437.5] 1.351939 1.567242 1.384466 1.051958 1.228412 1.273172 1.150202 1.054696 1.791078 1.146836 12590894410000
(968911056437.5, 969728848750] 1.466668 1.282268 1.721247 1.938521 1.223680 0.820913 0.915648 0.669299 0.935946 1.025810 11631325953000
(969728848750, 970546641062.5] 1.102303 1.222145 1.161587 1.164611 1.510758 0.890669 1.076864 1.080762 1.451501 1.338799 11640854993000
(970546641062.5, 971364433375] 1.372950 0.499775 0.519928 0.762839 0.740599 0.980566 0.956290 0.984323 0.801721 0.381010 7768117891000
... ... ... ... ... ... ... ... ... ... ... ...
(987720279625, 988538071937.5] 1.066512 1.493474 0.737041 1.494343 0.816017 0.989022 0.742362 1.084244 1.305361 1.271623 10868911758000
(988538071937.5, 989355864250] 1.256791 1.292554 1.054046 1.203922 1.115152 0.962503 1.297177 0.967745 0.984803 0.865309 10877075601000
(989355864250, 990173656562.5] 1.305381 1.163205 1.484774 1.095896 0.791094 0.720105 0.729407 1.112029 1.506592 1.091517 10887897135000
(990173656562.5, 990991448875] 1.423270 1.477083 1.254139 1.395889 1.231463 1.322124 1.885606 1.425561 1.584713 1.000152 13866936888000
(990991448875, 991809241187.5] 1.101134 0.811907 0.612132 1.189938 0.554290 1.317863 1.020844 0.930133 1.151858 2.309900 10904430868000
(991809241187.5, 992627033500] 1.155425 1.737140 2.308288 2.271416 1.256829 1.301674 0.824637 1.736524 1.176131 1.231936 14882646922000
(992627033500, 993444825812.5] 1.015723 1.024236 1.285525 1.322741 0.578617 0.587875 0.736284 0.938393 1.077100 1.433504 9930198338000
(993444825812.5, 994262618125] 1.217251 1.308343 0.544903 1.019225 0.988622 0.972760 1.422010 1.079463 0.702891 0.744532 9938324193000
(994262618125, 995080410437.5] 0.715044 1.195147 0.543093 1.121217 1.540718 1.216936 1.101350 0.991056 0.780961 0.794476 9946590550000
(995080410437.5, 995898202750] 1.127844 0.812822 0.644414 1.173950 0.906281 1.223563 1.216852 0.595634 1.839008 1.459632 10950873232000
(995898202750, 996715995062.5] 1.312467 1.062711 1.538294 1.367194 1.083751 1.737009 1.866823 1.772877 1.717911 1.540964 14945781002000
(996715995062.5, 997533787375] 1.893779 0.996484 1.082601 0.935375 1.457536 1.156758 0.809299 1.727679 2.053011 1.887477 13959291001000
(997533787375, 998351579687.5] 1.053412 1.054796 0.542600 0.956443 1.427244 0.667249 1.030183 1.496430 1.273484 0.498160 9978297839000
(998351579687.5, 999169372000] 0.762617 1.371859 1.297288 0.915803 1.007985 0.808290 1.610899 0.795453 1.112176 1.317631 10984921392000
(999169372000, 999987164312.5] 0.584950 0.942087 1.391479 0.249062 0.420063 0.480815 0.547831 1.303905 0.638885 0.440923 6996801041000
(999987164312.5, 1000804956625] 0.634556 0.540700 0.961660 1.027475 1.079119 1.122760 1.136322 1.041990 1.168853 1.286566 10003300355000
(1000804956625, 1001622748937.5] 1.041057 0.881172 0.907580 1.085099 1.507113 1.164350 1.320146 1.013125 0.799593 1.280765 11011884510000
(1001622748937.5, 1002440541250] 1.481619 1.225558 1.686203 1.409100 1.684347 0.732745 1.028795 1.693647 0.980132 1.077853 13026426803000
(1002440541250, 1003258333562.5] 1.345453 1.415458 1.500754 1.410862 0.838508 1.567585 0.969708 0.642624 0.744218 0.564830 11031102170000
(1003258333562.5, 1004076125875] 0.600784 0.619805 0.974948 1.063542 0.914102 1.158122 0.523372 0.406534 0.669751 1.069041 8029059091000
(1004076125875, 1004893918187.5] 2.277811 1.605148 1.539709 2.018681 1.936518 2.268702 1.586163 1.451735 2.215973 2.099558 19085473281000
(1004893918187.5, 1005711710500] 1.364079 2.359265 0.927486 1.420245 1.367862 0.884132 1.590219 1.111860 1.361097 1.613754 14073999171000
(1005711710500, 1006529502812.5] 0.882785 0.608716 0.657227 0.871343 1.022222 1.278891 1.218833 0.845423 0.743049 0.871511 9056019843000
(1006529502812.5, 1007347295125] 2.733801 1.412488 1.596065 1.943555 1.663032 1.275319 1.764865 1.305410 2.050944 1.254521 17119372287000
(1007347295125, 1008165087437.5] 1.233819 1.208151 0.949189 1.597651 0.856800 1.154128 1.087854 0.937893 1.195240 0.779277 11085910802000
(1008165087437.5, 1008982879750] 1.130610 0.914374 0.461797 1.473279 0.729905 1.538429 1.564066 0.875711 1.168716 1.143114 11094914201000
(1008982879750, 1009800672062.5] 2.969147 1.762991 2.002811 1.748394 2.266416 1.515704 1.358508 1.747357 1.495434 1.133238 18169208623000
(1009800672062.5, 1010618464375] 1.246296 1.182903 1.934072 0.981010 0.669962 1.827940 1.140974 1.645983 1.416513 0.954346 13132948429000
(1010618464375, 1011436256687.5] 1.450128 1.288415 1.095273 0.904368 1.507076 1.170172 1.577658 0.709115 1.434502 1.863294 13144482111000
(1011436256687.5, 1012254049000] 1.162192 1.580589 2.227009 1.110418 0.602952 0.850210 1.007390 1.255943 1.424739 0.778559 12143181834000

80 rows × 11 columns


In [315]:
test = [
        {
            "key" : "Consumer Discretionary" ,
            "values" : [ [ 946737623000 , 27.38478809681] , [ 946750546000 , 27.371377218208] , [ 948420439000 , 26.309915460827] , [ 1009790138000, 26.425199957521] , [ 1012264675000 , 50.823411519395] , [ 1151640000000 , 23.850443591584] , [ 1154318400000 , 23.158355444054] , [ 1156996800000 , 22.998689393694] , [ 1159588800000 , 27.977128511299] , [ 1162270800000 , 29.073672469721] , [ 1164862800000 , 28.587640408904] , [ 1167541200000 , 22.788453687638] , [ 1170219600000 , 22.429199073597] , [ 1172638800000 , 22.324103271051] , [ 1175313600000 , 17.558388444186] , [ 1177905600000 , 16.769518096208] , [ 1180584000000 , 16.214738201302] , [ 1183176000000 , 18.729632971228] , [ 1185854400000 , 18.814523318848] , [ 1188532800000 , 19.789986451358] , [ 1191124800000 , 17.070049054933] , [ 1193803200000 , 16.121349575715] , [ 1196398800000 , 15.141659430091] , [ 1199077200000 , 17.175388025298] , [ 1201755600000 , 17.286592443521] , [ 1204261200000 , 16.323141626569] , [ 1206936000000 , 19.231263773952] , [ 1209528000000 , 18.446256391094] , [ 1212206400000 , 17.822632399764] , [ 1214798400000 , 15.539366475979] , [ 1217476800000 , 15.255131790216] , [ 1220155200000 , 15.660963922593] , [ 1222747200000 , 13.254482273697] , [ 1225425600000 , 11.920796202299] , [ 1228021200000 , 12.122809090925] , [ 1230699600000 , 15.691026271393] , [ 1233378000000 , 14.720881635107] , [ 1235797200000 , 15.387939360044] , [ 1238472000000 , 13.765436672229] , [ 1241064000000 , 14.6314458648] , [ 1243742400000 , 14.292446536221] , [ 1246334400000 , 16.170071367016] , [ 1249012800000 , 15.948135554337] , [ 1251691200000 , 16.612872685134] , [ 1254283200000 , 18.778338719091] , [ 1256961600000 , 16.75602606542] , [ 1259557200000 , 19.385804443147] , [ 1262235600000 , 22.950590240168] , [ 1264914000000 , 23.61159018141] , [ 1267333200000 , 25.708586989581] , [ 1270008000000 , 26.883915999885] , [ 1272600000000 , 25.893486687065] , [ 1275278400000 , 24.678914263176] , [ 1277870400000 , 25.937275793023] , [ 1280548800000 , 29.46138169384] , [ 1283227200000 , 27.357322961862] , [ 1285819200000 , 29.057235285673] , [ 1288497600000 , 28.549434189386] , [ 1291093200000 , 28.506352379723] , [ 1293771600000 , 29.449241421597] , [ 1296450000000 , 25.796838168807] , [ 1298869200000 , 28.740145449189] , [ 1301544000000 , 22.091744141872] , [ 1304136000000 , 25.079662545409] , [ 1306814400000 , 23.674906973064] , [ 1309406400000 , 23.41800274293] , [ 1312084800000 , 23.243644138871] , [ 1314763200000 , 31.591854066817] , [ 1317355200000 , 31.497112374114] , [ 1320033600000 , 26.672380820431] , [ 1322629200000 , 27.297080015495] , [ 1325307600000 , 20.174315530051] , [ 1327986000000 , 19.631084213899] , [ 1330491600000 , 20.366462219462] , [ 1333166400000 , 17.429019937289] , [ 1335758400000 , 16.75543633539] , [ 1338436800000 , 16.182906906042]]
        } ,
        {
            "key" : "Consumer Staples" ,
            "values" : [ [ 1138683600000 , 7.2800122043237] , [ 1141102800000 , 7.1187787503354] , [ 1143781200000 , 8.351887016482] , [ 1146369600000 , 8.4156698763993] , [ 1149048000000 , 8.1673298604231] , [ 1151640000000 , 5.5132447126042] , [ 1154318400000 , 6.1152537710599] , [ 1156996800000 , 6.076765091942] , [ 1159588800000 , 4.6304473798646] , [ 1162270800000 , 4.6301068469402] , [ 1164862800000 , 4.3466656309389] , [ 1167541200000 , 6.830104897003] , [ 1170219600000 , 7.241633040029] , [ 1172638800000 , 7.1432372054153] , [ 1175313600000 , 10.608942063374] , [ 1177905600000 , 10.914964549494] , [ 1180584000000 , 10.933223880565] , [ 1183176000000 , 8.3457524851265] , [ 1185854400000 , 8.1078413081882] , [ 1188532800000 , 8.2697185922474] , [ 1191124800000 , 8.4742436475968] , [ 1193803200000 , 8.4994601179319] , [ 1196398800000 , 8.7387319683243] , [ 1199077200000 , 6.8829183612895] , [ 1201755600000 , 6.984133637885] , [ 1204261200000 , 7.0860136043287] , [ 1206936000000 , 4.3961787956053] , [ 1209528000000 , 3.8699674365231] , [ 1212206400000 , 3.6928925238305] , [ 1214798400000 , 6.7571718894253] , [ 1217476800000 , 6.4367313362344] , [ 1220155200000 , 6.4048441521454] , [ 1222747200000 , 5.4643833239669] , [ 1225425600000 , 5.3150786833374] , [ 1228021200000 , 5.3011272612576] , [ 1230699600000 , 4.1203601430809] , [ 1233378000000 , 4.0881783200525] , [ 1235797200000 , 4.1928665957189] , [ 1238472000000 , 7.0249415663205] , [ 1241064000000 , 7.006530880769] , [ 1243742400000 , 6.994835633224] , [ 1246334400000 , 6.1220222336254] , [ 1249012800000 , 6.1177436137653] , [ 1251691200000 , 6.1413396231981] , [ 1254283200000 , 4.8046006145874] , [ 1256961600000 , 4.6647600660544] , [ 1259557200000 , 4.544865006255] , [ 1262235600000 , 6.0488249316539] , [ 1264914000000 , 6.3188669540206] , [ 1267333200000 , 6.5873958262306] , [ 1270008000000 , 6.2281189839578] , [ 1272600000000 , 5.8948915746059] , [ 1275278400000 , 5.5967320482214] , [ 1277870400000 , 0.99784432084837] , [ 1280548800000 , 1.0950794175359] , [ 1283227200000 , 0.94479734407491] , [ 1285819200000 , 1.222093988688] , [ 1288497600000 , 1.335093106856] , [ 1291093200000 , 1.3302565104985] , [ 1293771600000 , 1.340824670897] , [ 1296450000000 , 0] , [ 1298869200000 , 0] , [ 1301544000000 , 0] , [ 1304136000000 , 0] , [ 1306814400000 , 0] , [ 1309406400000 , 0] , [ 1312084800000 , 0] , [ 1314763200000 , 0] , [ 1317355200000 , 4.4583692315] , [ 1320033600000 , 3.6493043348059] , [ 1322629200000 , 3.8610064091761] , [ 1325307600000 , 5.5144800685202] , [ 1327986000000 , 5.1750695220792] , [ 1330491600000 , 5.6710066952691] , [ 1333166400000 , 8.5658461590953] , [ 1335758400000 , 8.6135447714243] , [ 1338436800000 , 8.0231460925212]]
        }
    ]

In [316]:
pd.DataFrame(test)


Out[316]:
key values
0 Consumer Discretionary [[946737623000, 27.3847880968], [946750546000,...
1 Consumer Staples [[1138683600000, 7.28001220432], [114110280000...

In [761]:
df_transposed = df_result.transpose()

In [762]:
df_transposed


Out[762]:
bins (946765240615, 947648456312.5] (947648456312.5, 948466248625] (948466248625, 949284040937.5] (949284040937.5, 950101833250] (950101833250, 950919625562.5] (950919625562.5, 951737417875] (951737417875, 952555210187.5] (952555210187.5, 953373002500] (953373002500, 954190794812.5] (954190794812.5, 955008587125] ... (1004076125875, 1004893918187.5] (1004893918187.5, 1005711710500] (1005711710500, 1006529502812.5] (1006529502812.5, 1007347295125] (1007347295125, 1008165087437.5] (1008165087437.5, 1008982879750] (1008982879750, 1009800672062.5] (1009800672062.5, 1010618464375] (1010618464375, 1011436256687.5] (1011436256687.5, 1012254049000]
topic 1 1.007552e+00 1.123675e+00 1.274648e+00 1.596416e+00 8.981042e-01 1.220334e+00 1.674430e+00 9.247754e-01 1.277759e+00 5.930853e-01 ... 2.277811e+00 1.364079e+00 8.827850e-01 2.733801e+00 1.233819e+00 1.130610e+00 2.969147e+00 1.246296e+00 1.450128e+00 1.162192e+00
topic 2 6.855218e-01 1.550507e+00 6.330213e-01 1.842282e+00 1.433256e+00 9.487168e-01 1.086312e+00 1.571181e+00 1.929480e+00 6.882746e-01 ... 1.605148e+00 2.359265e+00 6.087159e-01 1.412488e+00 1.208151e+00 9.143736e-01 1.762991e+00 1.182903e+00 1.288415e+00 1.580589e+00
topic 3 9.800757e-01 1.465771e+00 1.017636e+00 7.554436e-01 1.498241e+00 7.563559e-01 2.586929e+00 1.345554e+00 2.587259e+00 7.792470e-01 ... 1.539709e+00 9.274865e-01 6.572272e-01 1.596065e+00 9.491888e-01 4.617965e-01 2.002811e+00 1.934072e+00 1.095273e+00 2.227009e+00
topic 4 1.005518e+00 1.003171e+00 1.405109e+00 1.557636e+00 1.416790e+00 1.266777e+00 1.600311e+00 1.572265e+00 1.680129e+00 1.120279e+00 ... 2.018681e+00 1.420245e+00 8.713426e-01 1.943555e+00 1.597651e+00 1.473279e+00 1.748394e+00 9.810101e-01 9.043678e-01 1.110418e+00
topic 5 4.273911e-01 1.429781e+00 6.501658e-01 8.350258e-01 1.228560e+00 1.095931e+00 2.071624e+00 1.539072e+00 1.566446e+00 1.007076e+00 ... 1.936518e+00 1.367862e+00 1.022222e+00 1.663032e+00 8.568001e-01 7.299047e-01 2.266416e+00 6.699625e-01 1.507076e+00 6.029518e-01
topic 6 7.193949e-01 1.221584e+00 1.669496e+00 7.356299e-01 1.273009e+00 1.117851e+00 1.781700e+00 1.286522e+00 2.025569e+00 6.212633e-01 ... 2.268702e+00 8.841315e-01 1.278891e+00 1.275319e+00 1.154128e+00 1.538429e+00 1.515704e+00 1.827940e+00 1.170172e+00 8.502097e-01
topic 7 4.750539e-01 1.085647e+00 9.231901e-01 1.121967e+00 1.991276e+00 1.485811e+00 1.277053e+00 1.088337e+00 2.314296e+00 7.736294e-01 ... 1.586163e+00 1.590219e+00 1.218833e+00 1.764865e+00 1.087854e+00 1.564066e+00 1.358508e+00 1.140974e+00 1.577658e+00 1.007390e+00
topic 8 6.677472e-01 1.189025e+00 9.042269e-01 1.354338e+00 1.332969e+00 9.557812e-01 1.321565e+00 1.363976e+00 1.330716e+00 1.363644e+00 ... 1.451735e+00 1.111860e+00 8.454229e-01 1.305410e+00 9.378932e-01 8.757110e-01 1.747357e+00 1.645983e+00 7.091152e-01 1.255943e+00
topic 9 6.245971e-01 9.967665e-01 1.039030e+00 8.070582e-01 1.844143e+00 1.031973e+00 1.467317e+00 1.345093e+00 2.313009e+00 1.211784e+00 ... 2.215973e+00 1.361097e+00 7.430493e-01 2.050944e+00 1.195240e+00 1.168716e+00 1.495434e+00 1.416513e+00 1.434502e+00 1.424739e+00
topic 10 4.071485e-01 9.340721e-01 4.834767e-01 1.394204e+00 1.083653e+00 1.120469e+00 1.132759e+00 9.632244e-01 1.975336e+00 8.417165e-01 ... 2.099558e+00 1.613754e+00 8.715114e-01 1.254521e+00 7.792765e-01 1.143114e+00 1.133238e+00 9.543461e-01 1.863294e+00 7.785587e-01
timestamp 6.629605e+12 1.137590e+13 9.488966e+12 1.139865e+13 1.330682e+13 1.046442e+13 1.523402e+13 1.238836e+13 1.812209e+13 8.591610e+12 ... 1.908547e+13 1.407400e+13 9.056020e+12 1.711937e+13 1.108591e+13 1.109491e+13 1.816921e+13 1.313295e+13 1.314448e+13 1.214318e+13

11 rows × 80 columns


In [763]:
type(df_transposed.columns.values)


Out[763]:
pandas.core.categorical.Categorical

In [764]:
df_transposed.columns = df_transposed.columns.astype(str) # YAAY, convert cathegorical column type to string

In [765]:
df_transposed['key'] = df_transposed.index # add "key" as a new column

In [766]:
df_transposed


Out[766]:
bins (946765240615, 947648456312.5] (947648456312.5, 948466248625] (948466248625, 949284040937.5] (949284040937.5, 950101833250] (950101833250, 950919625562.5] (950919625562.5, 951737417875] (951737417875, 952555210187.5] (952555210187.5, 953373002500] (953373002500, 954190794812.5] (954190794812.5, 955008587125] ... (1004893918187.5, 1005711710500] (1005711710500, 1006529502812.5] (1006529502812.5, 1007347295125] (1007347295125, 1008165087437.5] (1008165087437.5, 1008982879750] (1008982879750, 1009800672062.5] (1009800672062.5, 1010618464375] (1010618464375, 1011436256687.5] (1011436256687.5, 1012254049000] key
topic 1 1.007552e+00 1.123675e+00 1.274648e+00 1.596416e+00 8.981042e-01 1.220334e+00 1.674430e+00 9.247754e-01 1.277759e+00 5.930853e-01 ... 1.364079e+00 8.827850e-01 2.733801e+00 1.233819e+00 1.130610e+00 2.969147e+00 1.246296e+00 1.450128e+00 1.162192e+00 topic 1
topic 2 6.855218e-01 1.550507e+00 6.330213e-01 1.842282e+00 1.433256e+00 9.487168e-01 1.086312e+00 1.571181e+00 1.929480e+00 6.882746e-01 ... 2.359265e+00 6.087159e-01 1.412488e+00 1.208151e+00 9.143736e-01 1.762991e+00 1.182903e+00 1.288415e+00 1.580589e+00 topic 2
topic 3 9.800757e-01 1.465771e+00 1.017636e+00 7.554436e-01 1.498241e+00 7.563559e-01 2.586929e+00 1.345554e+00 2.587259e+00 7.792470e-01 ... 9.274865e-01 6.572272e-01 1.596065e+00 9.491888e-01 4.617965e-01 2.002811e+00 1.934072e+00 1.095273e+00 2.227009e+00 topic 3
topic 4 1.005518e+00 1.003171e+00 1.405109e+00 1.557636e+00 1.416790e+00 1.266777e+00 1.600311e+00 1.572265e+00 1.680129e+00 1.120279e+00 ... 1.420245e+00 8.713426e-01 1.943555e+00 1.597651e+00 1.473279e+00 1.748394e+00 9.810101e-01 9.043678e-01 1.110418e+00 topic 4
topic 5 4.273911e-01 1.429781e+00 6.501658e-01 8.350258e-01 1.228560e+00 1.095931e+00 2.071624e+00 1.539072e+00 1.566446e+00 1.007076e+00 ... 1.367862e+00 1.022222e+00 1.663032e+00 8.568001e-01 7.299047e-01 2.266416e+00 6.699625e-01 1.507076e+00 6.029518e-01 topic 5
topic 6 7.193949e-01 1.221584e+00 1.669496e+00 7.356299e-01 1.273009e+00 1.117851e+00 1.781700e+00 1.286522e+00 2.025569e+00 6.212633e-01 ... 8.841315e-01 1.278891e+00 1.275319e+00 1.154128e+00 1.538429e+00 1.515704e+00 1.827940e+00 1.170172e+00 8.502097e-01 topic 6
topic 7 4.750539e-01 1.085647e+00 9.231901e-01 1.121967e+00 1.991276e+00 1.485811e+00 1.277053e+00 1.088337e+00 2.314296e+00 7.736294e-01 ... 1.590219e+00 1.218833e+00 1.764865e+00 1.087854e+00 1.564066e+00 1.358508e+00 1.140974e+00 1.577658e+00 1.007390e+00 topic 7
topic 8 6.677472e-01 1.189025e+00 9.042269e-01 1.354338e+00 1.332969e+00 9.557812e-01 1.321565e+00 1.363976e+00 1.330716e+00 1.363644e+00 ... 1.111860e+00 8.454229e-01 1.305410e+00 9.378932e-01 8.757110e-01 1.747357e+00 1.645983e+00 7.091152e-01 1.255943e+00 topic 8
topic 9 6.245971e-01 9.967665e-01 1.039030e+00 8.070582e-01 1.844143e+00 1.031973e+00 1.467317e+00 1.345093e+00 2.313009e+00 1.211784e+00 ... 1.361097e+00 7.430493e-01 2.050944e+00 1.195240e+00 1.168716e+00 1.495434e+00 1.416513e+00 1.434502e+00 1.424739e+00 topic 9
topic 10 4.071485e-01 9.340721e-01 4.834767e-01 1.394204e+00 1.083653e+00 1.120469e+00 1.132759e+00 9.632244e-01 1.975336e+00 8.417165e-01 ... 1.613754e+00 8.715114e-01 1.254521e+00 7.792765e-01 1.143114e+00 1.133238e+00 9.543461e-01 1.863294e+00 7.785587e-01 topic 10
timestamp 6.629605e+12 1.137590e+13 9.488966e+12 1.139865e+13 1.330682e+13 1.046442e+13 1.523402e+13 1.238836e+13 1.812209e+13 8.591610e+12 ... 1.407400e+13 9.056020e+12 1.711937e+13 1.108591e+13 1.109491e+13 1.816921e+13 1.313295e+13 1.314448e+13 1.214318e+13 timestamp

11 rows × 81 columns


In [767]:
df_transposed = df_transposed[:10] # drop meaningless timestamp row (it's sum)

In [768]:
df_transposed


Out[768]:
bins (946765240615, 947648456312.5] (947648456312.5, 948466248625] (948466248625, 949284040937.5] (949284040937.5, 950101833250] (950101833250, 950919625562.5] (950919625562.5, 951737417875] (951737417875, 952555210187.5] (952555210187.5, 953373002500] (953373002500, 954190794812.5] (954190794812.5, 955008587125] ... (1004893918187.5, 1005711710500] (1005711710500, 1006529502812.5] (1006529502812.5, 1007347295125] (1007347295125, 1008165087437.5] (1008165087437.5, 1008982879750] (1008982879750, 1009800672062.5] (1009800672062.5, 1010618464375] (1010618464375, 1011436256687.5] (1011436256687.5, 1012254049000] key
topic 1 1.007552 1.123675 1.274648 1.596416 0.898104 1.220334 1.674430 0.924775 1.277759 0.593085 ... 1.364079 0.882785 2.733801 1.233819 1.130610 2.969147 1.246296 1.450128 1.162192 topic 1
topic 2 0.685522 1.550507 0.633021 1.842282 1.433256 0.948717 1.086312 1.571181 1.929480 0.688275 ... 2.359265 0.608716 1.412488 1.208151 0.914374 1.762991 1.182903 1.288415 1.580589 topic 2
topic 3 0.980076 1.465771 1.017636 0.755444 1.498241 0.756356 2.586929 1.345554 2.587259 0.779247 ... 0.927486 0.657227 1.596065 0.949189 0.461797 2.002811 1.934072 1.095273 2.227009 topic 3
topic 4 1.005518 1.003171 1.405109 1.557636 1.416790 1.266777 1.600311 1.572265 1.680129 1.120279 ... 1.420245 0.871343 1.943555 1.597651 1.473279 1.748394 0.981010 0.904368 1.110418 topic 4
topic 5 0.427391 1.429781 0.650166 0.835026 1.228560 1.095931 2.071624 1.539072 1.566446 1.007076 ... 1.367862 1.022222 1.663032 0.856800 0.729905 2.266416 0.669962 1.507076 0.602952 topic 5
topic 6 0.719395 1.221584 1.669496 0.735630 1.273009 1.117851 1.781700 1.286522 2.025569 0.621263 ... 0.884132 1.278891 1.275319 1.154128 1.538429 1.515704 1.827940 1.170172 0.850210 topic 6
topic 7 0.475054 1.085647 0.923190 1.121967 1.991276 1.485811 1.277053 1.088337 2.314296 0.773629 ... 1.590219 1.218833 1.764865 1.087854 1.564066 1.358508 1.140974 1.577658 1.007390 topic 7
topic 8 0.667747 1.189025 0.904227 1.354338 1.332969 0.955781 1.321565 1.363976 1.330716 1.363644 ... 1.111860 0.845423 1.305410 0.937893 0.875711 1.747357 1.645983 0.709115 1.255943 topic 8
topic 9 0.624597 0.996766 1.039030 0.807058 1.844143 1.031973 1.467317 1.345093 2.313009 1.211784 ... 1.361097 0.743049 2.050944 1.195240 1.168716 1.495434 1.416513 1.434502 1.424739 topic 9
topic 10 0.407149 0.934072 0.483477 1.394204 1.083653 1.120469 1.132759 0.963224 1.975336 0.841716 ... 1.613754 0.871511 1.254521 0.779277 1.143114 1.133238 0.954346 1.863294 0.778559 topic 10

10 rows × 81 columns


In [769]:
# just unify the open/closed interval for easier eval, and then take the left interval
df_transposed.columns = [int(eval(col_name.replace("]",")"))[0]) if not col_name=='key' else col_name for col_name in df_transposed.columns ]

In [770]:
df_transposed


Out[770]:
946765240615 947648456312 948466248625 949284040937 950101833250 950919625562 951737417875 952555210187 953373002500 954190794812 ... 1004893918187 1005711710500 1006529502812 1007347295125 1008165087437 1008982879750 1009800672062 1010618464375 1011436256687 key
topic 1 1.007552 1.123675 1.274648 1.596416 0.898104 1.220334 1.674430 0.924775 1.277759 0.593085 ... 1.364079 0.882785 2.733801 1.233819 1.130610 2.969147 1.246296 1.450128 1.162192 topic 1
topic 2 0.685522 1.550507 0.633021 1.842282 1.433256 0.948717 1.086312 1.571181 1.929480 0.688275 ... 2.359265 0.608716 1.412488 1.208151 0.914374 1.762991 1.182903 1.288415 1.580589 topic 2
topic 3 0.980076 1.465771 1.017636 0.755444 1.498241 0.756356 2.586929 1.345554 2.587259 0.779247 ... 0.927486 0.657227 1.596065 0.949189 0.461797 2.002811 1.934072 1.095273 2.227009 topic 3
topic 4 1.005518 1.003171 1.405109 1.557636 1.416790 1.266777 1.600311 1.572265 1.680129 1.120279 ... 1.420245 0.871343 1.943555 1.597651 1.473279 1.748394 0.981010 0.904368 1.110418 topic 4
topic 5 0.427391 1.429781 0.650166 0.835026 1.228560 1.095931 2.071624 1.539072 1.566446 1.007076 ... 1.367862 1.022222 1.663032 0.856800 0.729905 2.266416 0.669962 1.507076 0.602952 topic 5
topic 6 0.719395 1.221584 1.669496 0.735630 1.273009 1.117851 1.781700 1.286522 2.025569 0.621263 ... 0.884132 1.278891 1.275319 1.154128 1.538429 1.515704 1.827940 1.170172 0.850210 topic 6
topic 7 0.475054 1.085647 0.923190 1.121967 1.991276 1.485811 1.277053 1.088337 2.314296 0.773629 ... 1.590219 1.218833 1.764865 1.087854 1.564066 1.358508 1.140974 1.577658 1.007390 topic 7
topic 8 0.667747 1.189025 0.904227 1.354338 1.332969 0.955781 1.321565 1.363976 1.330716 1.363644 ... 1.111860 0.845423 1.305410 0.937893 0.875711 1.747357 1.645983 0.709115 1.255943 topic 8
topic 9 0.624597 0.996766 1.039030 0.807058 1.844143 1.031973 1.467317 1.345093 2.313009 1.211784 ... 1.361097 0.743049 2.050944 1.195240 1.168716 1.495434 1.416513 1.434502 1.424739 topic 9
topic 10 0.407149 0.934072 0.483477 1.394204 1.083653 1.120469 1.132759 0.963224 1.975336 0.841716 ... 1.613754 0.871511 1.254521 0.779277 1.143114 1.133238 0.954346 1.863294 0.778559 topic 10

10 rows × 81 columns


In [771]:
def myfunction(row):
    myarray = []
    for colname in df_transposed.columns.values[:-1]:
        myarray.append([ colname, row[colname]])
    return myarray
    
df_transposed['values'] = df_transposed.apply(myfunction, axis=1)


/home/daniela/anaconda/envs/spark-lda/lib/python2.7/site-packages/ipykernel/__main__.py:7: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy

In [679]:
pd.DataFrame(test) # how it should look like


Out[679]:
key values
0 Consumer Discretionary [[946737623000, 27.3847880968], [946750546000,...
1 Consumer Staples [[1138683600000, 7.28001220432], [114110280000...

In [772]:
df_transposed


Out[772]:
946765240615 947648456312 948466248625 949284040937 950101833250 950919625562 951737417875 952555210187 953373002500 954190794812 ... 1005711710500 1006529502812 1007347295125 1008165087437 1008982879750 1009800672062 1010618464375 1011436256687 key values
topic 1 1.007552 1.123675 1.274648 1.596416 0.898104 1.220334 1.674430 0.924775 1.277759 0.593085 ... 0.882785 2.733801 1.233819 1.130610 2.969147 1.246296 1.450128 1.162192 topic 1 [[946765240615, 1.00755188807], [947648456312,...
topic 2 0.685522 1.550507 0.633021 1.842282 1.433256 0.948717 1.086312 1.571181 1.929480 0.688275 ... 0.608716 1.412488 1.208151 0.914374 1.762991 1.182903 1.288415 1.580589 topic 2 [[946765240615, 0.685521798709], [947648456312...
topic 3 0.980076 1.465771 1.017636 0.755444 1.498241 0.756356 2.586929 1.345554 2.587259 0.779247 ... 0.657227 1.596065 0.949189 0.461797 2.002811 1.934072 1.095273 2.227009 topic 3 [[946765240615, 0.980075687334], [947648456312...
topic 4 1.005518 1.003171 1.405109 1.557636 1.416790 1.266777 1.600311 1.572265 1.680129 1.120279 ... 0.871343 1.943555 1.597651 1.473279 1.748394 0.981010 0.904368 1.110418 topic 4 [[946765240615, 1.00551785658], [947648456312,...
topic 5 0.427391 1.429781 0.650166 0.835026 1.228560 1.095931 2.071624 1.539072 1.566446 1.007076 ... 1.022222 1.663032 0.856800 0.729905 2.266416 0.669962 1.507076 0.602952 topic 5 [[946765240615, 0.427391105468], [947648456312...
topic 6 0.719395 1.221584 1.669496 0.735630 1.273009 1.117851 1.781700 1.286522 2.025569 0.621263 ... 1.278891 1.275319 1.154128 1.538429 1.515704 1.827940 1.170172 0.850210 topic 6 [[946765240615, 0.719394904485], [947648456312...
topic 7 0.475054 1.085647 0.923190 1.121967 1.991276 1.485811 1.277053 1.088337 2.314296 0.773629 ... 1.218833 1.764865 1.087854 1.564066 1.358508 1.140974 1.577658 1.007390 topic 7 [[946765240615, 0.475053920076], [947648456312...
topic 8 0.667747 1.189025 0.904227 1.354338 1.332969 0.955781 1.321565 1.363976 1.330716 1.363644 ... 0.845423 1.305410 0.937893 0.875711 1.747357 1.645983 0.709115 1.255943 topic 8 [[946765240615, 0.667747195668], [947648456312...
topic 9 0.624597 0.996766 1.039030 0.807058 1.844143 1.031973 1.467317 1.345093 2.313009 1.211784 ... 0.743049 2.050944 1.195240 1.168716 1.495434 1.416513 1.434502 1.424739 topic 9 [[946765240615, 0.624597137077], [947648456312...
topic 10 0.407149 0.934072 0.483477 1.394204 1.083653 1.120469 1.132759 0.963224 1.975336 0.841716 ... 0.871511 1.254521 0.779277 1.143114 1.133238 0.954346 1.863294 0.778559 topic 10 [[946765240615, 0.40714850653], [947648456312,...

10 rows × 82 columns


In [786]:
df_transposed[['key','values']].transpose()


Out[786]:
topic 1 topic 2 topic 3 topic 4 topic 5 topic 6 topic 7 topic 8 topic 9 topic 10
key topic 1 topic 2 topic 3 topic 4 topic 5 topic 6 topic 7 topic 8 topic 9 topic 10
values [[946765240615, 1.00755188807], [947648456312,... [[946765240615, 0.685521798709], [947648456312... [[946765240615, 0.980075687334], [947648456312... [[946765240615, 1.00551785658], [947648456312,... [[946765240615, 0.427391105468], [947648456312... [[946765240615, 0.719394904485], [947648456312... [[946765240615, 0.475053920076], [947648456312... [[946765240615, 0.667747195668], [947648456312... [[946765240615, 0.624597137077], [947648456312... [[946765240615, 0.40714850653], [947648456312,...

In [804]:
df_dict = df_transposed[['key','values']].transpose().to_dict("dict")

In [813]:
df_dict.values()


Out[813]:
[{'key': 'topic 8',
  'values': [[946765240615, 0.6677471956680243],
   [947648456312, 1.189024701020503],
   [948466248625, 0.9042269302846203],
   [949284040937, 1.3543375803842652],
   [950101833250, 1.3329688088483491],
   [950919625562, 0.9557812047062483],
   [951737417875, 1.3215651864744191],
   [952555210187, 1.3639758536507816],
   [953373002500, 1.3307161882794916],
   [954190794812, 1.3636443677391412],
   [955008587125, 1.0880887567825195],
   [955826379437, 1.0581912122151949],
   [956644171750, 1.6999105620636243],
   [957461964062, 1.029512421230252],
   [958279756375, 0.9111799733451189],
   [959097548687, 1.5817987700120943],
   [959915341000, 1.4375279241711918],
   [960733133312, 0.476193231470948],
   [961550925625, 0.9650315486847262],
   [962368717937, 1.70512820428428],
   [963186510250, 1.7142694979974198],
   [964004302562, 0.7722504833649471],
   [964822094875, 1.1304949834320812],
   [965639887187, 0.7618777459444098],
   [966457679500, 1.2395650131285094],
   [967275471812, 1.237898448037822],
   [968093264125, 1.0546962567860454],
   [968911056437, 0.6692990247488669],
   [969728848750, 1.080762402769765],
   [970546641062, 0.9843227609019158],
   [971364433375, 0.7926982185092605],
   [972182225687, 1.0187136094784657],
   [973000018000, 2.1326130597667547],
   [973817810312, 1.4776811908494325],
   [974635602625, 1.1605740823214583],
   [975453394937, 0.5895094989020254],
   [976271187250, 1.7644617057944234],
   [977088979562, 1.2955790488711703],
   [977906771875, 1.1581990922929195],
   [978724564187, 1.1548527886794333],
   [979542356500, 1.484770874176361],
   [980360148812, 1.3592775883473778],
   [981177941125, 0.9297366357881953],
   [981995733437, 2.100030320310475],
   [982813525750, 1.1145012493707076],
   [983631318062, 1.5370740769564244],
   [984449110375, 0.4975043244026862],
   [985266902687, 1.3056504878713784],
   [986084695000, 1.5511999668659344],
   [986902487312, 1.1420112101152093],
   [987720279625, 1.0842440786480934],
   [988538071937, 0.9677446723081775],
   [989355864250, 1.1120286484052153],
   [990173656562, 1.4255606957894307],
   [990991448875, 0.930133276185778],
   [991809241187, 1.7365240223661982],
   [992627033500, 0.9383931748694496],
   [993444825812, 1.0794633698899971],
   [994262618125, 0.9910564168282614],
   [995080410437, 0.5956338743711657],
   [995898202750, 1.77287663704057],
   [996715995062, 1.7276792607446245],
   [997533787375, 1.4964295049140977],
   [998351579687, 0.7954531285742834],
   [999169372000, 1.303905220791894],
   [999987164312, 1.0419895985165102],
   [1000804956625, 1.0131249448716102],
   [1001622748937, 1.6936466113879174],
   [1002440541250, 0.6426241318868645],
   [1003258333562, 0.4065340753621526],
   [1004076125875, 1.4517349457230233],
   [1004893918187, 1.1118598218515707],
   [1005711710500, 0.8454228806748425],
   [1006529502812, 1.3054099330582534],
   [1007347295125, 0.9378931593329385],
   [1008165087437, 0.8757110086518304],
   [1008982879750, 1.747357328265011],
   [1009800672062, 1.6459830461336478],
   [1010618464375, 0.7091152181372629],
   [1011436256687, 1.2559433560112903]]},
 {'key': 'topic 9',
  'values': [[946765240615, 0.6245971370767451],
   [947648456312, 0.996766479583136],
   [948466248625, 1.039030354341742],
   [949284040937, 0.8070582108738589],
   [950101833250, 1.8441426761158066],
   [950919625562, 1.0319726421610436],
   [951737417875, 1.4673171737113908],
   [952555210187, 1.3450928826810291],
   [953373002500, 2.313008711434773],
   [954190794812, 1.2117844719597013],
   [955008587125, 1.3252982788077963],
   [955826379437, 1.6949269367200726],
   [956644171750, 1.2576090561148163],
   [957461964062, 2.028418716968966],
   [958279756375, 1.0426424979388909],
   [959097548687, 1.1876806748006075],
   [959915341000, 1.2491283838158487],
   [960733133312, 0.4371245086664953],
   [961550925625, 1.3246950924370708],
   [962368717937, 1.7730008316670385],
   [963186510250, 2.1186039604337443],
   [964004302562, 0.9641824475447974],
   [964822094875, 0.7989777251039774],
   [965639887187, 1.1704791670267278],
   [966457679500, 2.0839104110479263],
   [967275471812, 0.7596400507860925],
   [968093264125, 1.7910775260201726],
   [968911056437, 0.9359461582620987],
   [969728848750, 1.4515014186584743],
   [970546641062, 0.8017214833833579],
   [971364433375, 0.7179058034760522],
   [972182225687, 1.7764326736405356],
   [973000018000, 1.810902652431594],
   [973817810312, 0.7869721072152928],
   [974635602625, 1.4547280999879113],
   [975453394937, 1.055322916475004],
   [976271187250, 1.6125041095673573],
   [977088979562, 1.4655739342045444],
   [977906771875, 1.1705917781410984],
   [978724564187, 1.0686013562282535],
   [979542356500, 1.951059458953231],
   [980360148812, 1.5098738103367815],
   [981177941125, 1.2421852743746142],
   [981995733437, 2.169067534102096],
   [982813525750, 1.2907279268020202],
   [983631318062, 1.2088078958356039],
   [984449110375, 1.1134485643306093],
   [985266902687, 1.945658953680102],
   [986084695000, 1.9362560203123709],
   [986902487312, 1.405402087016954],
   [987720279625, 1.3053611452074654],
   [988538071937, 0.9848030946296489],
   [989355864250, 1.5065923516807203],
   [990173656562, 1.584712652288807],
   [990991448875, 1.151858352454554],
   [991809241187, 1.1761305466333423],
   [992627033500, 1.0771002949987467],
   [993444825812, 0.7028911625588461],
   [994262618125, 0.780961026689965],
   [995080410437, 1.8390084217129994],
   [995898202750, 1.717910573059566],
   [996715995062, 2.0530111590595816],
   [997533787375, 1.2734841929075364],
   [998351579687, 1.1121762046088897],
   [999169372000, 0.6388848063988131],
   [999987164312, 1.1688529179192308],
   [1000804956625, 0.7995933929187038],
   [1001622748937, 0.9801321652491771],
   [1002440541250, 0.7442177045778113],
   [1003258333562, 0.6697507937387072],
   [1004076125875, 2.215973174789657],
   [1004893918187, 1.3610969794320504],
   [1005711710500, 0.7430493438641402],
   [1006529502812, 2.0509440040762734],
   [1007347295125, 1.1952397458953608],
   [1008165087437, 1.1687162633664592],
   [1008982879750, 1.4954342778366345],
   [1009800672062, 1.4165132129444626],
   [1010618464375, 1.4345020146929683],
   [1011436256687, 1.424738889573211]]},
 {'key': 'topic 2',
  'values': [[946765240615, 0.6855217987091915],
   [947648456312, 1.5505074587877667],
   [948466248625, 0.633021323833831],
   [949284040937, 1.8422818138601595],
   [950101833250, 1.433255757765241],
   [950919625562, 0.9487168469953342],
   [951737417875, 1.08631216956142],
   [952555210187, 1.5711811591756795],
   [953373002500, 1.9294801198292841],
   [954190794812, 0.6882745657089924],
   [955008587125, 2.5816976361272808],
   [955826379437, 1.3295584304450638],
   [956644171750, 1.4496923103511263],
   [957461964062, 1.5805191140601946],
   [958279756375, 0.8576577230237963],
   [959097548687, 1.7040176749845382],
   [959915341000, 1.876944994469977],
   [960733133312, 0.6712816821193093],
   [961550925625, 1.0036373042507696],
   [962368717937, 2.5087810462170133],
   [963186510250, 1.3343731722668468],
   [964004302562, 0.7860081020091872],
   [964822094875, 1.275636151095075],
   [965639887187, 1.2027086253344155],
   [966457679500, 1.705308123893456],
   [967275471812, 1.0967813220362157],
   [968093264125, 1.567242045505073],
   [968911056437, 1.2822676426426125],
   [969728848750, 1.2221447241083838],
   [970546641062, 0.4997750638613844],
   [971364433375, 0.9058333897995208],
   [972182225687, 1.3719050997705295],
   [973000018000, 1.6859220827986723],
   [973817810312, 1.9164674781478332],
   [974635602625, 1.3373898349066269],
   [975453394937, 0.7990938589225879],
   [976271187250, 1.3332500237193519],
   [977088979562, 1.2094953152628056],
   [977906771875, 1.089385863986745],
   [978724564187, 1.7505524697185022],
   [979542356500, 2.010556801372517],
   [980360148812, 1.6564017185540876],
   [981177941125, 1.5686305339558864],
   [981995733437, 1.2796034524913704],
   [982813525750, 1.1965431354734755],
   [983631318062, 1.0406987209131537],
   [984449110375, 0.7791805414419933],
   [985266902687, 1.1571433845974737],
   [986084695000, 0.7773818355694649],
   [986902487312, 0.8804861498154503],
   [987720279625, 1.4934742998613668],
   [988538071937, 1.2925538801448058],
   [989355864250, 1.1632048313120933],
   [990173656562, 1.4770829953678728],
   [990991448875, 0.8119074241657933],
   [991809241187, 1.7371404527776286],
   [992627033500, 1.0242360456163602],
   [993444825812, 1.3083429086934941],
   [994262618125, 1.1951470874489694],
   [995080410437, 0.8128219484117003],
   [995898202750, 1.062710627377101],
   [996715995062, 0.9964840856379626],
   [997533787375, 1.0547956849155704],
   [998351579687, 1.3718589499092573],
   [999169372000, 0.9420873843068481],
   [999987164312, 0.5406996355481781],
   [1000804956625, 0.8811723386291022],
   [1001622748937, 1.2255583428666392],
   [1002440541250, 1.415457606408275],
   [1003258333562, 0.6198045410817372],
   [1004076125875, 1.6051483970154057],
   [1004893918187, 2.3592652642857166],
   [1005711710500, 0.6087158897089447],
   [1006529502812, 1.4124880281357102],
   [1007347295125, 1.2081507275910175],
   [1008165087437, 0.9143735572957661],
   [1008982879750, 1.7629910376915303],
   [1009800672062, 1.182903456388666],
   [1010618464375, 1.2884146214852135],
   [1011436256687, 1.5805887856273966]]},
 {'key': 'topic 3',
  'values': [[946765240615, 0.9800756873336334],
   [947648456312, 1.4657711772892899],
   [948466248625, 1.0176359100244634],
   [949284040937, 0.7554436031945428],
   [950101833250, 1.4982405243976753],
   [950919625562, 0.7563559286181701],
   [951737417875, 2.5869290111776264],
   [952555210187, 1.345554163070339],
   [953373002500, 2.587259179063187],
   [954190794812, 0.7792469798330524],
   [955008587125, 1.4561736483840946],
   [955826379437, 1.9402132118729956],
   [956644171750, 1.9379434798217006],
   [957461964062, 0.9399748375733741],
   [958279756375, 0.5559160821374649],
   [959097548687, 1.6169869376132986],
   [959915341000, 0.973538108006607],
   [960733133312, 0.49662842041256183],
   [961550925625, 1.3706877190646245],
   [962368717937, 1.5409750564183264],
   [963186510250, 1.7996151016101745],
   [964004302562, 1.2734715717941336],
   [964822094875, 1.2088649688305007],
   [965639887187, 0.6997787317626253],
   [966457679500, 2.3669145869283827],
   [967275471812, 0.9071555992477345],
   [968093264125, 1.3844660410858478],
   [968911056437, 1.721247095733421],
   [969728848750, 1.1615870033494755],
   [970546641062, 0.5199282712257656],
   [971364433375, 0.3457978290586107],
   [972182225687, 1.7050459161142706],
   [973000018000, 2.0352264785225005],
   [973817810312, 1.3084243856966273],
   [974635602625, 1.6909536548644937],
   [975453394937, 0.8535373873412289],
   [976271187250, 1.3508148829567213],
   [977088979562, 1.2768080253367255],
   [977906771875, 1.1032305076189188],
   [978724564187, 1.3238701984120957],
   [979542356500, 1.3880333134230076],
   [980360148812, 1.8971216375631903],
   [981177941125, 1.770292719389556],
   [981995733437, 1.586801604937828],
   [982813525750, 1.1788507087270488],
   [983631318062, 1.5451526949673704],
   [984449110375, 0.7134702395124704],
   [985266902687, 1.2082250856534917],
   [986084695000, 1.8161921940185177],
   [986902487312, 1.3562670292357302],
   [987720279625, 0.7370410061694367],
   [988538071937, 1.0540459332205365],
   [989355864250, 1.4847737880778433],
   [990173656562, 1.2541390925996694],
   [990991448875, 0.6121319468789895],
   [991809241187, 2.3082880177540988],
   [992627033500, 1.2855253578691626],
   [993444825812, 0.5449031254492844],
   [994262618125, 0.543093291409561],
   [995080410437, 0.6444140081851175],
   [995898202750, 1.5382944401159235],
   [996715995062, 1.0826010396474188],
   [997533787375, 0.5425998605532503],
   [998351579687, 1.2972882990033947],
   [999169372000, 1.391478632997621],
   [999987164312, 0.9616600472411824],
   [1000804956625, 0.9075801272995836],
   [1001622748937, 1.6862033370405713],
   [1002440541250, 1.5007544779401707],
   [1003258333562, 0.9749484198965955],
   [1004076125875, 1.5397092078864159],
   [1004893918187, 0.9274864709644223],
   [1005711710500, 0.6572272110732084],
   [1006529502812, 1.596065079580374],
   [1007347295125, 0.9491888244236345],
   [1008165087437, 0.46179651994619225],
   [1008982879750, 2.0028105985321294],
   [1009800672062, 1.9340719408559048],
   [1010618464375, 1.0952725689657323],
   [1011436256687, 2.227008896879657]]},
 {'key': 'topic 1',
  'values': [[946765240615, 1.0075518880740746],
   [947648456312, 1.1236749834403017],
   [948466248625, 1.274647914867],
   [949284040937, 1.5964161993195747],
   [950101833250, 0.8981041569031148],
   [950919625562, 1.220333838595232],
   [951737417875, 1.6744297135202246],
   [952555210187, 0.9247754335200199],
   [953373002500, 1.2777590178466642],
   [954190794812, 0.5930852621702828],
   [955008587125, 1.033632660835691],
   [955826379437, 2.114097817804803],
   [956644171750, 1.319687237197941],
   [957461964062, 1.430689596503548],
   [958279756375, 0.962627821081611],
   [959097548687, 1.601418959014274],
   [959915341000, 1.323011525676413],
   [960733133312, 0.4657127714592183],
   [961550925625, 1.2385126611674389],
   [962368717937, 2.430706302918099],
   [963186510250, 1.3568758998924506],
   [964004302562, 0.512867996697544],
   [964822094875, 0.9229723820292179],
   [965639887187, 1.136363330111923],
   [966457679500, 1.493321639295076],
   [967275471812, 0.8221056738721026],
   [968093264125, 1.351938604474273],
   [968911056437, 1.4666682237889828],
   [969728848750, 1.1023032646763422],
   [970546641062, 1.3729495783887824],
   [971364433375, 0.5774364945446104],
   [972182225687, 2.0550317621353855],
   [973000018000, 1.2320478545105442],
   [973817810312, 1.5211604380459052],
   [974635602625, 1.0304456819941838],
   [975453394937, 0.9262396698856973],
   [976271187250, 1.3119359304594422],
   [977088979562, 1.3819582354158426],
   [977906771875, 0.6643383098238198],
   [978724564187, 1.3494357005307216],
   [979542356500, 0.8045512784997745],
   [980360148812, 1.0088692566966135],
   [981177941125, 0.8856417866002589],
   [981995733437, 1.6169304960545512],
   [982813525750, 1.1758333896955997],
   [983631318062, 0.9838667198997317],
   [984449110375, 1.0292874593382768],
   [985266902687, 1.3445922271683117],
   [986084695000, 1.478827450968843],
   [986902487312, 1.4482492088907921],
   [987720279625, 1.0665116705103552],
   [988538071937, 1.256790946936084],
   [989355864250, 1.3053814888449513],
   [990173656562, 1.4232700144355044],
   [990991448875, 1.1011342084226179],
   [991809241187, 1.1554251556020196],
   [992627033500, 1.0157227522742596],
   [993444825812, 1.2172506858446235],
   [994262618125, 0.7150439494621869],
   [995080410437, 1.1278438393937829],
   [995898202750, 1.3124670885064036],
   [996715995062, 1.8937789052401965],
   [997533787375, 1.0534115541278537],
   [998351579687, 0.7626166255346845],
   [999169372000, 0.5849504066940232],
   [999987164312, 0.6345561187486963],
   [1000804956625, 1.041056561937463],
   [1001622748937, 1.4816193312624757],
   [1002440541250, 1.3454531280239614],
   [1003258333562, 0.6007838320617043],
   [1004076125875, 2.2778106310357233],
   [1004893918187, 1.364078524443525],
   [1005711710500, 0.8827850356534848],
   [1006529502812, 2.7338007370199535],
   [1007347295125, 1.2338185507475854],
   [1008165087437, 1.1306096251735143],
   [1008982879750, 2.969147144168529],
   [1009800672062, 1.2462958514597533],
   [1010618464375, 1.4501281935802588],
   [1011436256687, 1.1621917638463928]]},
 {'key': 'topic 6',
  'values': [[946765240615, 0.7193949044851262],
   [947648456312, 1.22158395271213],
   [948466248625, 1.669495963907185],
   [949284040937, 0.7356299308032109],
   [950101833250, 1.2730094131386216],
   [950919625562, 1.1178513463239188],
   [951737417875, 1.781699749559598],
   [952555210187, 1.2865220547877823],
   [953373002500, 2.0255694175243595],
   [954190794812, 0.6212632781488612],
   [955008587125, 1.6020607766076986],
   [955826379437, 2.059578595294533],
   [956644171750, 1.4869830647996636],
   [957461964062, 1.028902402070735],
   [958279756375, 0.6101937919094634],
   [959097548687, 1.73325620712857],
   [959915341000, 0.790493344076165],
   [960733133312, 0.1220291247777837],
   [961550925625, 1.7152457564045889],
   [962368717937, 2.267008195543684],
   [963186510250, 1.7801256882866925],
   [964004302562, 0.727974617811224],
   [964822094875, 1.0640176295399164],
   [965639887187, 1.2138294334955015],
   [966457679500, 1.6940277667486798],
   [967275471812, 0.6481816399249385],
   [968093264125, 1.2731724841175045],
   [968911056437, 0.8209126888858401],
   [969728848750, 0.8906692054404463],
   [970546641062, 0.9805659851307555],
   [971364433375, 0.44724509150032987],
   [972182225687, 1.4362366462497886],
   [973000018000, 1.1814235839127625],
   [973817810312, 1.5736432595639325],
   [974635602625, 1.2573865376422977],
   [975453394937, 1.22290123577403],
   [976271187250, 1.2761680985906119],
   [977088979562, 0.8656589681566917],
   [977906771875, 0.9272420747583189],
   [978724564187, 1.3185670023677258],
   [979542356500, 0.9767567501362227],
   [980360148812, 2.1156723534778026],
   [981177941125, 1.6066228114821384],
   [981995733437, 1.6455136736223799],
   [982813525750, 0.9620211210027754],
   [983631318062, 1.2158887405176975],
   [984449110375, 0.5627735948315243],
   [985266902687, 0.8230950849919445],
   [986084695000, 1.011834153052878],
   [986902487312, 1.6199034207674428],
   [987720279625, 0.9890224466321915],
   [988538071937, 0.9625026798812495],
   [989355864250, 0.7201045539553834],
   [990173656562, 1.3221244097910219],
   [990991448875, 1.3178629606766958],
   [991809241187, 1.301673559222889],
   [992627033500, 0.5878752890118377],
   [993444825812, 0.9727599171535395],
   [994262618125, 1.2169363640645554],
   [995080410437, 1.2235632567463055],
   [995898202750, 1.7370086668185867],
   [996715995062, 1.1567575182542078],
   [997533787375, 0.6672490716969257],
   [998351579687, 0.8082898589636345],
   [999169372000, 0.4808149920946211],
   [999987164312, 1.1227598186519963],
   [1000804956625, 1.1643499394550956],
   [1001622748937, 0.7327445731786941],
   [1002440541250, 1.5675850449704887],
   [1003258333562, 1.1581221906839336],
   [1004076125875, 2.2687022268183905],
   [1004893918187, 0.8841315256450905],
   [1005711710500, 1.2788911792128796],
   [1006529502812, 1.2753193339887077],
   [1007347295125, 1.1541278165268496],
   [1008165087437, 1.5384286979483885],
   [1008982879750, 1.5157039856604195],
   [1009800672062, 1.8279397116208127],
   [1010618464375, 1.1701717110813457],
   [1011436256687, 0.8502097154771072]]},
 {'key': 'topic 7',
  'values': [[946765240615, 0.47505392007574776],
   [947648456312, 1.0856472340741603],
   [948466248625, 0.9231900533798502],
   [949284040937, 1.121966703548838],
   [950101833250, 1.9912759863327412],
   [950919625562, 1.4858107070698172],
   [951737417875, 1.277053082635428],
   [952555210187, 1.0883370320334262],
   [953373002500, 2.3142962538575946],
   [954190794812, 0.7736294278600843],
   [955008587125, 1.7055440833371405],
   [955826379437, 1.4204153261862744],
   [956644171750, 1.9888141989282635],
   [957461964062, 1.0147124451504441],
   [958279756375, 0.5578143372589897],
   [959097548687, 1.7992390937412472],
   [959915341000, 1.2328182160294112],
   [960733133312, 0.19400888771002545],
   [961550925625, 1.324679614958023],
   [962368717937, 2.1278414402860664],
   [963186510250, 1.927277684286281],
   [964004302562, 0.639447087266735],
   [964822094875, 1.1592477022227852],
   [965639887187, 1.0992848822422883],
   [966457679500, 1.4948867905791499],
   [967275471812, 1.2901968482350354],
   [968093264125, 1.1502019780317059],
   [968911056437, 0.9156480855805851],
   [969728848750, 1.0768644527689288],
   [970546641062, 0.9562896930536375],
   [971364433375, 0.5802893913659681],
   [972182225687, 1.3180632545637156],
   [973000018000, 2.0040060485250812],
   [973817810312, 1.2717581475815614],
   [974635602625, 1.0810000020638015],
   [975453394937, 0.5665802327693251],
   [976271187250, 1.452348372040015],
   [977088979562, 1.2354615162228266],
   [977906771875, 1.2837912207664064],
   [978724564187, 1.5566314264988919],
   [979542356500, 1.3243486481245101],
   [980360148812, 1.520984497968786],
   [981177941125, 1.4296653429478636],
   [981995733437, 1.888194841067462],
   [982813525750, 1.094566968456515],
   [983631318062, 0.9391214530796298],
   [984449110375, 1.7186461104839545],
   [985266902687, 1.3651886672075528],
   [986084695000, 1.9082800338590313],
   [986902487312, 1.1532186028589768],
   [987720279625, 0.7423622171246386],
   [988538071937, 1.2971765384764564],
   [989355864250, 0.7294074463672279],
   [990173656562, 1.8856061722651758],
   [990991448875, 1.0208441731659375],
   [991809241187, 0.8246368889171969],
   [992627033500, 0.7362842034088409],
   [993444825812, 1.4220096964806972],
   [994262618125, 1.101349818091246],
   [995080410437, 1.216851979702095],
   [995898202750, 1.8668229060445838],
   [996715995062, 0.8092991019426492],
   [997533787375, 1.0301830806184167],
   [998351579687, 1.6108986287907532],
   [999169372000, 0.5478309316250086],
   [999987164312, 1.1363223431563518],
   [1000804956625, 1.3201455088184508],
   [1001622748937, 1.0287950249914841],
   [1002440541250, 0.9697082943279236],
   [1003258333562, 0.5233718731512971],
   [1004076125875, 1.586163416517248],
   [1004893918187, 1.5902194798544174],
   [1005711710500, 1.2188326781666619],
   [1006529502812, 1.7648648321847809],
   [1007347295125, 1.0878539934855327],
   [1008165087437, 1.5640661164170677],
   [1008982879750, 1.3585077897793005],
   [1009800672062, 1.1409741012436414],
   [1010618464375, 1.5776581562325496],
   [1011436256687, 1.0073896285628305]]},
 {'key': 'topic 4',
  'values': [[946765240615, 1.0055178565797955],
   [947648456312, 1.0031705796100518],
   [948466248625, 1.4051090488246074],
   [949284040937, 1.557636479301192],
   [950101833250, 1.4167896312063515],
   [950919625562, 1.2667768742003358],
   [951737417875, 1.6003107228869562],
   [952555210187, 1.572265162866747],
   [953373002500, 1.6801287179991082],
   [954190794812, 1.1202790307024726],
   [955008587125, 2.12982907475883],
   [955826379437, 1.1916093122683986],
   [956644171750, 1.4846997179044124],
   [957461964062, 1.166422709621472],
   [958279756375, 0.7797559953700907],
   [959097548687, 1.366619769122279],
   [959915341000, 1.7515136293224518],
   [960733133312, 0.3690469158466305],
   [961550925625, 0.9529857632890459],
   [962368717937, 1.726304416867983],
   [963186510250, 1.7255517839772223],
   [964004302562, 1.1334409957464988],
   [964822094875, 1.673514337354577],
   [965639887187, 0.6400875090857064],
   [966457679500, 1.8200255426774348],
   [967275471812, 1.1403897871028872],
   [968093264125, 1.0519577259298778],
   [968911056437, 1.9385205770071048],
   [969728848750, 1.1646105846921575],
   [970546641062, 0.7628389415136575],
   [971364433375, 1.1510238195730436],
   [972182225687, 1.2443334797754948],
   [973000018000, 1.0453889448354072],
   [973817810312, 1.7719457031850863],
   [974635602625, 0.9333137852941136],
   [975453394937, 0.4737732183799633],
   [976271187250, 2.101579712816001],
   [977088979562, 1.668059026325484],
   [977906771875, 1.2272426878934894],
   [978724564187, 1.4885903133622376],
   [979542356500, 1.0664248136036036],
   [980360148812, 1.2466976858767407],
   [981177941125, 1.3137311987439801],
   [981995733437, 2.686142879538482],
   [982813525750, 1.1841484337200836],
   [983631318062, 1.2197118710253378],
   [984449110375, 0.5396040580083418],
   [985266902687, 0.892071133602851],
   [986084695000, 1.1541534325671414],
   [986902487312, 1.4248248115614683],
   [987720279625, 1.4943430185116846],
   [988538071937, 1.2039220463920446],
   [989355864250, 1.095896247795706],
   [990173656562, 1.3958892893724686],
   [990991448875, 1.1899377924895687],
   [991809241187, 2.271416050082692],
   [992627033500, 1.3227411650554206],
   [993444825812, 1.0192247681764641],
   [994262618125, 1.1212172525114152],
   [995080410437, 1.1739497745253826],
   [995898202750, 1.3671943413958965],
   [996715995062, 0.9353754512595733],
   [997533787375, 0.956442705136737],
   [998351579687, 0.9158027983620156],
   [999169372000, 0.24906171755674558],
   [999987164312, 1.0274747685115324],
   [1000804956625, 1.085099057214514],
   [1001622748937, 1.4090997889036438],
   [1002440541250, 1.410861675390767],
   [1003258333562, 1.0635415974644407],
   [1004076125875, 2.018681244978143],
   [1004893918187, 1.420245223787734],
   [1005711710500, 0.8713426108900991],
   [1006529502812, 1.943555469061113],
   [1007347295125, 1.5976505927682951],
   [1008165087437, 1.4732794559349396],
   [1008982879750, 1.7483940105427187],
   [1009800672062, 0.9810100786164216],
   [1010618464375, 0.9043678361509273],
   [1011436256687, 1.1104184340424457]]},
 {'key': 'topic 5',
  'values': [[946765240615, 0.4273911054676029],
   [947648456312, 1.4297813045471714],
   [948466248625, 0.6501658287538996],
   [949284040937, 0.8350258090587249],
   [950101833250, 1.2285600193187807],
   [950919625562, 1.09593136615058],
   [951737417875, 2.0716240117943183],
   [952555210187, 1.5390719000525883],
   [953373002500, 1.5664463271536355],
   [954190794812, 1.0070761401930677],
   [955008587125, 2.376455934718429],
   [955826379437, 1.9519995334053557],
   [956644171750, 2.188833256819325],
   [957461964062, 1.4835327672237446],
   [958279756375, 0.9353691204685123],
   [959097548687, 1.6803415794548633],
   [959915341000, 1.9055280665919732],
   [960733133312, 0.15163256514558326],
   [961550925625, 1.1430710849474268],
   [962368717937, 1.956148406516023],
   [963186510250, 1.3353136461448316],
   [964004302562, 0.4119351001361615],
   [964822094875, 0.7082747897597599],
   [965639887187, 0.9669315057941674],
   [966457679500, 1.644842206920231],
   [967275471812, 1.110701761272609],
   [968093264125, 1.228411741918709],
   [968911056437, 1.223680044020504],
   [969728848750, 1.5107579652336112],
   [970546641062, 0.740598564945238],
   [971364433375, 1.0590175280869738],
   [972182225687, 1.6570404959239626],
   [973000018000, 1.1669982078958894],
   [973817810312, 1.2292238475670267],
   [974635602625, 1.5484924226918626],
   [975453394937, 0.5981951434201961],
   [976271187250, 1.3000379575265293],
   [977088979562, 2.1067037698619533],
   [977906771875, 1.1051241558070064],
   [978724564187, 1.0698578656863489],
   [979542356500, 1.4984140934437546],
   [980360148812, 1.2105425088483597],
   [981177941125, 1.3787420137419009],
   [981995733437, 1.876683501685751],
   [982813525750, 0.6095671907376562],
   [983631318062, 1.5183060607134393],
   [984449110375, 0.5325831721697684],
   [985266902687, 1.2921626504501769],
   [986084695000, 1.4550145451169427],
   [986902487312, 1.3290872063628152],
   [987720279625, 0.8160169992380923],
   [988538071937, 1.1151516183713424],
   [989355864250, 0.7910935155113912],
   [990173656562, 1.2314625747442016],
   [990991448875, 0.5542899502907563],
   [991809241187, 1.2568292553930127],
   [992627033500, 0.5786173495251136],
   [993444825812, 0.9886221545664756],
   [994262618125, 1.5407183546319847],
   [995080410437, 0.9062807907996494],
   [995898202750, 1.0837507480936992],
   [996715995062, 1.4575359866223083],
   [997533787375, 1.427244222569699],
   [998351579687, 1.0079846809819297],
   [999169372000, 0.4200625493896061],
   [999987164312, 1.0791189898369606],
   [1000804956625, 1.50711338190557],
   [1001622748937, 1.6843473979878525],
   [1002440541250, 0.8385083352730768],
   [1003258333562, 0.9141018201129569],
   [1004076125875, 1.936518340974932],
   [1004893918187, 1.3678623747278393],
   [1005711710500, 1.0222217697972107],
   [1006529502812, 1.6630315629977341],
   [1007347295125, 0.8568000566085411],
   [1008165087437, 0.7299046543721776],
   [1008982879750, 2.26641596936811],
   [1009800672062, 0.6699624760174685],
   [1010618464375, 1.507076131596232],
   [1011436256687, 0.6029518327109576]]},
 {'key': 'topic 10',
  'values': [[946765240615, 0.40714850653005885],
   [947648456312, 0.9340721289354894],
   [948466248625, 0.4834766717828013],
   [949284040937, 1.3942036696556321],
   [950101833250, 1.0836530259733188],
   [950919625562, 1.1204692451793197],
   [951737417875, 1.1327591786786186],
   [952555210187, 0.9632243581616073],
   [953373002500, 1.9753360670119033],
   [954190794812, 0.841716475684345],
   [955008587125, 1.7012191496405191],
   [955826379437, 1.2394096237873087],
   [956644171750, 1.1858271159991272],
   [957461964062, 1.2973149895972695],
   [958279756375, 0.7868426574660614],
   [959097548687, 1.7286403341282275],
   [959915341000, 1.4594958078399614],
   [960733133312, 0.6163418923914443],
   [961550925625, 0.9614534547962856],
   [962368717937, 1.9641060992814865],
   [963186510250, 1.9079935651043372],
   [964004302562, 0.7784215976287707],
   [964822094875, 1.0579993306321092],
   [965639887187, 1.1086590692022347],
   [966457679500, 2.4571979187811546],
   [967275471812, 0.9869488694845628],
   [968093264125, 1.1468355961307908],
   [968911056437, 1.0258104593299846],
   [969728848750, 1.3387989783024157],
   [970546641062, 0.3810096575955055],
   [971364433375, 1.4227524340856303],
   [972182225687, 1.4171970623478514],
   [973000018000, 1.7054710868007932],
   [973817810312, 1.1427234421473016],
   [974635602625, 0.5057158982332504],
   [975453394937, 0.9148468381299415],
   [976271187250, 1.4968992065295463],
   [977088979562, 2.4947021603419555],
   [977906771875, 1.2708543089112767],
   [978724564187, 0.9190408785157899],
   [979542356500, 1.4950839682670185],
   [980360148812, 1.4745589423302596],
   [981177941125, 1.8747516829756066],
   [981995733437, 2.1510316961896043],
   [982813525750, 1.1932398760141176],
   [983631318062, 1.7913717660916109],
   [984449110375, 0.5135019354803749],
   [985266902687, 0.6662123247767167],
   [986084695000, 1.9108603676688753],
   [986902487312, 1.240550273375161],
   [987720279625, 1.2716231180966755],
   [988538071937, 0.8653085896396544],
   [989355864250, 1.0915171280494693],
   [990173656562, 1.0001521033458478],
   [990991448875, 2.3098999152693094],
   [991809241187, 1.231936051250923],
   [992627033500, 1.433504367370809],
   [993444825812, 0.7445322111865786],
   [994262618125, 0.7944764388618555],
   [995080410437, 1.4596321061518027],
   [995898202750, 1.5409639715476706],
   [996715995062, 1.8874774915914774],
   [997533787375, 0.4981601225599128],
   [998351579687, 1.317630825271157],
   [999169372000, 0.44092335814481975],
   [999987164312, 1.2865657618693611],
   [1000804956625, 1.2807647469499068],
   [1001622748937, 1.0778534271315432],
   [1002440541250, 0.5648296012006607],
   [1003258333562, 1.069040856446475],
   [1004076125875, 2.099558414261061],
   [1004893918187, 1.613754335007634],
   [1005711710500, 0.8715114009585279],
   [1006529502812, 1.2545210198971006],
   [1007347295125, 0.7792765326202445],
   [1008165087437, 1.1431141008936645],
   [1008982879750, 1.1332378581556162],
   [1009800672062, 0.9543461247192213],
   [1010618464375, 1.8632935480775095],
   [1011436256687, 0.7785586972687113]]}]

In [ ]: